人教版选修21第二章直线与圆锥曲线讲义_第1页
人教版选修21第二章直线与圆锥曲线讲义_第2页
人教版选修21第二章直线与圆锥曲线讲义_第3页
人教版选修21第二章直线与圆锥曲线讲义_第4页
人教版选修21第二章直线与圆锥曲线讲义_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

案例(二)-精析精练课堂 合作 探究重点难点突破知识点一直线与圆锥曲线的位置关系(1)直线与椭圆的位置关系根据曲线和方程的理论,如果直线和椭圆有交点,那么交点坐标就应该同时满足直线和椭圆的方程,否则就不满足,因此我们可以将直线和椭圆的位置关系转化为对直线的方程与椭圆的方程所联立的方程组上来,即通过考查方程组解的情况来判断直线和椭圆的位置关系,也就是:设直线方程y=kx+m,若直线与椭圆方程联立,消去y得关于x的一元二次方程:ax2+bx+c=0(a0),0,直线与椭圆有两个交点,直线与椭圆相交;=0时,直线与椭圆有个公共点,直线与椭圆相切;0,直线与双曲线有两个交点,直线与双曲线相交;=0时,直线与双曲线有一个公共点,直线与双曲线相切;0,即k1,且k0时,l与C有两个公共点,此时称直线1与C相交(2) 当=0,即k=1时,与C有一个公共点,此时称直线l与C相切;(3) 当1时,与C没有公共点,此时称直线l与C相离.综上所述,当k=0,或k=1时,与C有一个公共点;当k1时,与C没有公共点.规律总结 (1)直线与抛物线相切,则直线与抛物线只有个公共点.反过来,直线与抛物线只有一个公共点,则直线与抛物线不一定是相切的; (2)解析中方程的二次项系数带有字母,不可忽视对字母k的讨论. 【变式训练1】直线l:ax+by-3a=0与双曲线=1只有一个公共点,则l共有 条,它们的方程是 . 答案 (1)当b=0时,l:x=3,=1, y=0,此时,l与双曲线只有一个公共点. (2)当b0时, 得(4b2-9a2)x2+54a2x-9(9a2+4b2)=0. a.若462-9a2=0,即=时,只有一个公共点,此时l:y=(3-x),即2x+3y-6=0.b.4b2-9a20,即时,二次方程=542a4+36(4b2-9a2)(4b2+9a2)=36(81a4+16b4-81a4)=3616b40,此时直线l与双曲线必有两个交点. 综上所述,共有3条,其方程为x3=0或2x+3y-6=0. 题型2 弦长问题 【例2】 已知直线y=x-4被抛物线y2=2mx(mR)截得的弦长为6,求抛物线的标准方程. 解析 直线和抛物线的位置关系仍然是转化为对直线的方程与椭圆的方程所联立的方程组上来,即通过考查方程组解的情况来判断直线和抛物线的位置关系;同时弦长公式仍然适用. 答案 由得x2-2(4+m)x+16=0, 弦长=2.由2=6,得m=1或m=-9,经检验,m=1或m=-9均符合题意.所求抛物线标准方程为y2=2x或y2=-18x. 规律总结 由于mR,故m的几何意又发生了变化,此时,|m|才表示焦点到准线的距离. 【变式训练2】 椭圆ax2+by2=1与直线x+y=1相交于A、B两点,若|AB|=2,且AB的中点C与椭圆中心连线的斜率为,求实数a、b的值.答案 设椭圆与直线交于A(x1,y1),B(x2,y2)两点,则由可得(a+b)x2-2bx+b-1=0.所以x1+x2=,x1+x2=,所|AB|=|x1-x1|=2,得(a+b)2=a+b-ab.又因为kx=-1=,所以a=b .把代人,得b=,a=.题型3 中点弦问题【例3】设A、B是双曲线x2-=1上的两点,点N(1,2)是线段AB的中点.(1) 求直线AB的方程.(2) 如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么? 解析 涉及直线截圆锥曲线所得弦长及弦的中点的有关问题,常常要运用根与系数的关系. 答案 (1)显然,AB与x轴不垂直,设其斜率为k,其方程为y=k(x-1)+2,代入双曲线方程并整理得 (2-k2)x2-2k(2-k)x-k2+4k-6=0. 设A、B两点的坐标分别为(x1,y1)、(x2,y2), 由根与系数的关系及N是AB的中点,知=2. 解得 k=1. 因此,直线AB的方程为y=x+1. (2)线段AB的垂直平分线的方程为 y=-x+3,代入双曲线方程,得 x2+6x-11=0. 设C、D两点坐标分别为(x3,y3)、(x4,y4),由根与系数的关系,得x3+x4=-6,x3x4=-11. |x3-x4|=4, 据弦长公式得 |CD|=|x3-x4|=4.又设CD中点为M,求得M点的坐标为(-3,6)点A(-1,0)到点M的距离|MA|=2.由于C、D是线段AB垂直平分线上的两点,点B到点M的距离等于点A到点M的距离. 这样点A、B、C、D到点M的距离均等于210,因此四点共圆 规律总结 本题考查了直线、圆、双曲线的有关内容,是综合性较强的一个题目;证明四点共圆时,要充分利用CD是直径这一隐含条件. 【变式训练3】 直线l:6x-5y-28=0交椭圆=1(ab2)于B、C两点,A(0,b)是椭圆的一个顶点,且ABC重心与椭圆的右焦点F重合,求椭圆的方程. 答案 设B(x1,y1),C(x2,y2),设BC的中点D(x0,y0),F(c,0),A(0,b),可利用|AF|:|FD|=2:1,结合定比分点公式求得x0=c,y0=-.由于点D在BC的直线上,则18c+5b-56=0,将B、C两点坐标代入椭圆方程并作差:=0,KAB-,2a2=5bc. 由于b2+c2=a2 ,由可得:41c2-194c+224=0,c=2或c=.ab2,c=2,从而b=4,a2=20,椭圆方程为:=1题型4 最值及参数范围问题【例4】在直线l:x+y-4=0上任取一点M,过M且以椭圆=1的焦点为焦点作椭圆,问M点在何处,所作椭圆的长轴最短,并求此椭圆的方程. 解析 椭圆的长轴的长的2倍即为椭圆上点到两焦点距离的和,这样,求过直线l上点M所作长轴最短的椭圆,即转化为求直线l上一点,使这点到两焦点F1、F2的距离之和最小. 答案 a2=16,b2=12, c2=a2-b2=4. 故已知椭圆=1的两焦点F1(-2,0),F2(2,0),过F2向引垂直线l:y=x-2,求出F2关于l的对称点F2,则F2的坐标(4,2)(如右图),直线F1F2的方程为x-3y+2=0.解得M即为所求的点.此时,|MF1|+|MF2|=|MF1|+|MF2|=|F1F2|=2.设所求椭圆方程为=1,a=,c=2,b2=a2-c2=10-4=6,所求椭圆方程为=1规律总结 本题的实际几何意义是:待求椭圆与已知直线l相切时,长轴最短.【变式训练4】从椭圆=1(ab0)上一点M向x轴作垂线,恰好通过椭圆的左焦点F1,且其长轴端点A及短轴端点B的连线AB平行于OM,若Q为椭圆上任一点,F2是右焦点,求F1QF2的最大值. 解析 利用OMAB,得a,b,c的关系,由cosF1QF2的取值范围确定F1QF2的最大值. 答案 如右图,点M的坐标为(-c,), 因为OMAB,所以kCM=kAB, -,即b=c,a=c. 设|QF1|=m,|QF2|=n, F1QF2=由余弦定理,得cos=-1=-1=0.当|QF1|=|QF2|时,等号成立.0cos1.的最大值为,即F1QF2的最大值为.【例5】已知双曲线=1(a0,b0)的离心率=,过点A(0,-b)和B(a,0)的直线与原点的距离为. (1)求双曲线的方程; (2)直线y=kx+m(k0,m0)与该双曲线交于不同的两点C,D,且C,D两点都在以A为圆心的同一圆上,求m的取值范围. 解析 (1)依条件建立ab的关系,求a2,b2; (2)利用直线与圆锥曲线有交点的条件,结合韦达定理作转化. 答案 (1)由题设,得解得a2=3,b2=1, 双曲线的方程为-y2=1. (2)把直线方程y=kx+m代入双曲线方程,并整理得(1-3k2)x2-6kmx-3m2-3=0. 因为直线与双曲线交于不同两点, 所以即k2,且m2+1-3k20. 设C(x1,y1),D(x2,y2),则x1+x2=, y1+y2=k(x1+x2)+2m=, 设CD中点为P(x0,y0), 其中则 依题意,APCD,kAP=-,整理得3k2=4m+1. 将式代入式得m2-4m0, m4,或m0,即m=-, m的取值范围为m4,或-4m0. 规律总结 (1)应熟练掌握研究直线与圆锥曲线相交问题的一般方法; (2)第(2)小题中注意将点C、D都在以A为圆心的同一圆上的条件转化为APCD,进而转化为斜率关系,同时掌握设点不求点的处理技巧. 【变式训练5】已知椭圆的两个焦点为F1(0,-2),F2(0,2),离心率e=. (1)求椭圆方程; (2)一条不与坐标轴平行的直线l与椭圆交于不同的两点M、N,且线段MN中点的横坐标为-,求直线l倾斜角的取值范围. 答案(1)c=2,a=3,c=2, b2=1. 椭圆方程为+x2=1. (2)设M(x1,y1),N(x2,y2),且MN中点为P(-,y0),kMN=k(k0),则+x=1,+x=1.相减,得+(x1-x2)(x1+x2)=0.,y0=.由于点(-,)在椭圆+x2=1内部,3,k或k0)相交于A、B两点,则直线l的倾斜角范围是 ( ) A.0,) B.(,)(,) C.0,)(,) D.(,) 【答案】 D(点拨:当直线l与x轴垂直时符合题意;另外,直线l的斜率必须满足k1或k1-1)3. 直线y=kx+1与椭圆=1恒有公共点,且椭圆焦点在x轴上,则m的取值范围是 . 【答案】1m5(点拨:直线y=kx+1过定点(0,1),该点应在椭圆的内部(含短轴的端点).)4. 直线x+y=1与椭圆mx2+ny2=1相交于A、B两点,过A、B中点和坐标原点的直线的斜率为,则的值为 . 【答案】(点拨:利用点差法处理.) 能力提升5. 设直线y=k(x+3)与抛物线y=ax2交于A(x1,y1)、B(x2,y2)两点,则的值是 ( ) A.- B. C.-3 D.不能确定与k的值有关 【答案】 A(点拨:将直线的方程代入抛物线方程中,利用韦达定理解决.)6. 已知双曲线方程=1,.是否存在直线l,使N(1,)为l被双曲线所截弦的中点.若存在,求出直线l的方程;若不存在,请说明理由. 【答案】 假设过N的直线交双曲线于A(x1,y1),B(x2,y2),则作差得=0,所以kAB=1,l为:y=x-,但由得:2x2-4x+9=0,b0)相交于A、B两点,且线段AB的中点在直线l:x-2y=0上. (1)求此椭圆的离心率; (2)若椭圆的右焦点关于直线l的对称点的在圆x2+y2=4上,求此椭圆的方程. 【答案】 (1)设A、B两点的坐标分别为A(x1,y1),B(x2,y2).则由得:(a2+b2)x2-2a2x+a2-a2b2=0根据韦达定理,得x1+x2=,y1+y2=-(x1+x2)+2=,线段AB的中点坐标为.由已知得=0,a2-2b2=2(a2-c2),a2=2c2,故椭圆的离心率为=.(2)由(1)知b=c,从而椭圆的右焦点坐标为F(b,0),设F(b,0)关于直线l:x-2y=0的对称点为(x0,y0),则=-1且-2=0,解得x0=b且y0由已知得x+y=4,=4,b2=4,故所求的椭圆方程为=1.8. 若抛物线y=x2上存在两点P,Q关于直线y=m(x-3)对称,求实数m的取值范围. 【答案】 如右图,设P(x1,x),Q(x2,x),过这两点的直线的斜率为k=x1+x2=-,线段PQ的中点坐标x中=+2=-.又由y=m(x3)y中=m(-3)=-m(+3),由于中点总在抛物线之内部,-m(+3)(-)2(横坐标为-的抛物线上的点的纵坐标),从而有12m3+2m2+10,即mb0)相交于A、B两点,若F(-c,0)是椭圆的左焦点,则FAB的最大面积是( )A.bc B.ab C.ac D.b2 【答案】 A(点拨:SFAB=c|yA-yB|,因为|yA-yB|max=2b,所以SFAB的最大值为c2b=bc.)3.设P(8,1)平分双曲线x2-4y2=4的一条弦,则这条弦所在的直线方程是 . 【答案】 2x-y-15=0(点拨:设弦所在直线的方程为y-1=k(x-8),由消去y得(1-4k2)x2-8(1-8k)kx-4(1-8k)2-4=0,由x1+x2=16得k=2,所以所求直线的方程为2x-y-15=0.)4.抛物线x2=y上两点A(x1,y1),B(x2,y2)关于直线l:y=x+m对称,若x1x2=-,则m= . 【答案】 设AB中点M(x0,y0),点M在l上,kAB=-1,(x2+x1)(x2-x1)=(y2-y1)2x0=(-1),x0=-y0=-+m,又y0=x+x=(x1+x2)2-2x1x2=m=.能力提升5.直线y=x+3与曲线=1A.没有交点 B.只有一个交点C. 有两个交点 D.有三个交点【答案】 D(点拨:曲线=1的图象是双曲线的y轴右侧部分和椭圆在y轴的左侧部分.)6.椭圆+=1,(ab0)与直线x+y-1=0相交于P、Q且OPOQ(O为坐标原点),求证:+等于定值.【答案】由消去y得(a2+b2)x2-2a2x+a2(1-b2)=0,有两个交点,0,即4a4-4(a2+b2)a2(1-b2)0,即b2(a2+b2-1)0,b0,a2+b21设P(x1,y1),Q(x2,y2),则x1+x2=,x1x2=,由OPOQ得x1x2+y1y2=0,又y1=1-x1,y2=1-x2得:2x1x2-(x1+x2)+1=0,2-+1=0,化简得:a2+b2=2a2b2,故+=2为定值.7.设抛物线x2=-y与直线y=3x-4交于M、N两点,点P在抛物线上由M到N运动(1)求PMN的面积取得最大值时P点的坐标(x0,y0);(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论