




已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,一、相似矩阵与相似变换的概念,1. 等价关系,二、相似矩阵与相似变换的性质,证明,推论 若 阶方阵A与对角阵,利用对角矩阵计算矩阵多项式,利用上 述结论可以 很方便地计 算矩阵A 的 多项式 .,定理,证明,证明,三、利用相似变换将方阵对角化,命题得证.,说明,如果 的特征方程有重根,此时不一定有 个线性无关的特征向量,从而矩阵 不一定能 对角化,但如果能找到 个线性无关的特征向量, 还是能对角化,例1 判断下列实矩阵能否化为对角阵?,解,解之得基础解系,求得基础解系,解之得基础解系,故 不能化为对角矩阵.,解,解之得基础解系,所以 可对角化.,注意,即矩阵 的列向量和对角矩阵中特征值的位置 要相互对应,四、小结,相似矩阵 相似是矩阵之间的一种关系,它具有很多良好 的性质,除了课堂内介绍的以外,还有:,相似变换与相似变换矩阵,这种变换的重要意义在于简化对矩阵的各种 运算,其方法是先通过相似变换,将矩阵变成与 之等价的对角矩阵,再对对角矩阵进行运算,从 而将比较复杂的矩阵的运算转化为比较简单的对 角矩阵的运算,相似变换是对方阵进行的一种运算,它把A 变成 ,而可逆矩阵 称为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年共享出行平台在提升用户出行体验中的创新服务研究报告
- 父母遗产房子分割协议书
- 管廊钢筋合同分包协议书
- 物流车辆三方转让协议书
- 海洋技术入股协议合同书
- 黄金麻外墙干挂合同范本
- 防水sbs施工合同范本
- 高校就业协议与劳动合同
- 生产线外包协议合同范本
- 苏州市购买二手房协议书
- 网约车考试题库及答案
- 慢阻肺健康宣教
- 湖北省两校2025年物理高一下期末综合测试试题含解析
- 热射病病例查房汇报
- 小学一年级升二年级暑假数学作业-应用题(178题)(附答案)
- 酒店卫生管理自查报告和整改措施
- 养猪学培训课件
- 2024过敏性休克抢救指南(2024)课件干货分享
- GB/T 28731-2012固体生物质燃料工业分析方法
- 高校助学贷款结清凭证
- 2023年度万科集团合格供应商名录
评论
0/150
提交评论