




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时作业25解三角形的应用第一次作业基础巩固练一、选择题1如图,两座灯塔A和B与河岸观察站C的距离相等,灯塔A在观察站南偏西40,灯塔B在观察站南偏东60,则灯塔A在灯塔B的(D)A北偏东10 B北偏西10C南偏东80 D南偏西80解析:由条件及题图可知,AB40,又BCD60,所以CBD30,所以DBA10,因此灯塔A在灯塔B南偏西80.2一名学生在河岸上紧靠河边笔直行走,某时刻测得河对岸靠近河边处的参照物与学生前进方向成30角,前进200 m后,测得该参照物与前进方向成75角,则河的宽度为(A)A50(1) m B100(1) mC50 m D100 m解析:如图所示,在ABC中,BAC30,ACB753045,AB200 m,由正弦定理,得BC100(m),所以河的宽度为BCsin7510050(1)(m)3为测出所住小区的面积,某人进行了一些测量工作,所得数据如图所示,则小区的面积是(D)A. km2B. km2C. km2D. km2解析:连接AC,根据余弦定理可得AC km,故ABC为直角三角形且ACB90,BAC30,故ADC为等腰三角形,设ADDCx km,根据余弦定理得x2x2x23,即x23(2),所以所求的面积为13(2)(km2)4已知ABC的内角A,B,C的对边分别为a,b,c.若abcosCcsinB,且ABC的面积为1,则b的最小值为(A)A2 B3C. D.解析:由abcosCcsinB及正弦定理,得sinAsinBcosCsinCsinB,即sin(BC)sinBcosCsinCsinB,得sinCcosBsinCsinB,又sinC0,所以tanB1.因为B(0,),所以B.由SABCacsinB1,得ac24.又b2a2c22accosB2acac(2)(42)4,当且仅当ac时等号成立,所以b2,b的最小值为2.故选A.5(2019郑州质量预测)在ABC中,角A,B,C的对边分别为a,b,c,且2ccosB2ab,若ABC的面积Sc,则ab的最小值为(C)A28 B36C48 D56解析:在ABC中,2ccosB2ab,由正弦定理,得2sinCcosB2sinAsinB.又A(BC),所以sinAsin(BC)sin(BC),所以2sinCcosB2sin(BC)sinB2sinBcosC2cosBsinCsinB,得2sinBcosCsinB0,因为sinB0,所以cosC,又0C,所以C.由ScabsinCab,得c.由余弦定理得,c2a2b22abcosCa2b2ab2abab3ab(当且仅当ab时取等号),所以()23ab,得ab48,所以ab的最小值为48,故选C.6. (2019山东日照二模)如图所示,在平面四边形ABCD中,AB1,BC2,ACD为正三角形,则BCD面积的最大值为(D)A22B.C.2D.1解析:在ABC中,设ABC,ACB,由余弦定理得:AC21222212cos,ACD为正三角形,CD2AC254cos,SBCD2CDsinCDsinCDcosCDsin,在ABC中,由正弦定理得:,ACsinsin,CDsinsin,(CDcos)2CD2(1sin2)CD2sin254cossin2(2cos)2,BAC,为锐角,CDcos2cos,SBCDCDcosCDsin(2cos)sinsin,当时,(SBCD)max1.二、填空题7如图所示,测量河对岸的塔高AB时可以选与塔底B在同一水平面内的两个测点C与D,测得BCD15,BDC30,CD30,并在点C测得塔顶A的仰角为60,则塔高AB等于15.解析:在BCD中,CBD1801530135.由正弦定理得,所以BC15.在RtABC中,ABBCtanACB1515.8.如图所示,在ABC中,C,BC4,点D在边AC上,ADDB,DEAB,E为垂足,若DE2,则cosA.解析:ADDB,AABD,BDC2A.设ADBDx,在BCD中,可得.在AED中,可得.联立可得,解得cosA.9在ABC中,已知BC2,2,则ABC面积的最大值是.解析:由,得2()2,设|c,|b,则b2c28,又因为bccosA2,所以cosA,所以sin2A1,设ABC的面积为S,则S2(bc)2sin2A(b2c24),因为bc4,所以S23,所以S.所以ABC面积的最大值是.10(2019武汉市调研测试)在钝角ABC中,内角A,B,C的对边分别为a,b,c,若a4,b3,则c的取值范围是(1,)(5,7)解析:三角形中两边之和大于第三边,两边之差小于第三边,据此可得1c7,若C为钝角,则cosC5,若A为钝角,则cosA0,解得0c,结合可得c的取值范围是(1,)(5,7)三、解答题11(2018全国卷)在平面四边形ABCD中,ADC90,A45,AB2,BD5.(1)求cosADB;(2)若DC2,求BC.解:(1)在ABD中,由正弦定理得.由题设知,所以sinADB.由题设知,ADB0,sinC,C为锐角,C60.(2)由C60及2,可得c.由余弦定理得3b2a2abab(当且仅当ab时取等号),SabsinC3,ABC的面积S的最大值为.第二次作业高考模拟解答题体验1(2018北京卷)在ABC中,a7,b8,cosB.(1)求A;(2)求AC边上的高解:(1)在ABC中,因为cosB,所以sinB.由正弦定理得sinA.由题设知B,所以0A.所以A.(2)在ABC中,因为sinCsin(AB)sinAcosBcosAsinB,所以AC边上的高为asinC7.2(2019益阳湘潭调研考试)已知锐角ABC中,内角A,B,C的对边分别为a,b,c,且.(1)求角C的大小;(2)求函数ysinAsinB的值域解:(1)由,利用正弦定理可得2sinAcosCsinBcosCsinCcosB,可化为2sinAcosCsin(CB)sinA,sinA0,cosC,C(0,),C.(2)ysinAsinBsinAsin(A)sinAcosAsinAsin(A),AB,0A,0B,A,A,sin(A)(,1,y(,3已知锐角三角形ABC的内角A,B,C的对边分别为a,b,c,且满足cos2Bcos2Csin2AsinAsinB,sin(AB)cos(AB)(1)求角A,B,C;(2)若a,求三角形ABC的边长b的值及三角形ABC的面积解:(1)cos2Bcos2Csin2AsinAsinB,sin2CsinAsinBsin2Asin2B,由正弦定理得c2aba2b2,cosC,0C,C.sin(AB)cos(AB),sinAcosBcosAsinBcosAcosBsinAsinB,sinA(sinBcosB)cosA(sinBcosB),sinAcosA,由A为锐角,可得A,BAC.(2)a,A,B,由正弦定理可得b,三角形ABC的面积SabsinC.4(2019武汉市调研测试)在锐角ABC中,内角A,B,C的对边分别是a,b,c,满足cos2Acos2B2cos(B)cos(B)0.(1)求角A的值;(2)若b且ba,求a的取值范围解:(1)由cos2Acos2B2cos(B)cos(B)0,得2sin2B2sin2A2(cos2Bsin2B)0,化简得sinA,又ABC为锐角三角形,故A.(2)ba,ca,C,B,sinB.由正弦定理,得,a,由sinB(,得a,3)5.如图所示,在ABC中,C,48,点D在BC边上,且AD5,cosADB.(1)求AC,CD的长;(2)求cosBAD的值解:(1)在ABD中,cosADB,sinADB.sinCADsin(ADBACD)sinADBcoscosADBsin.在ADC中,由正弦定理得,即,解得AC8,CD.(2)48,8CB48,解得CB6,BDCBCD5.在ABC中,AB2.在ABD中,cosBAD.6在ABC中,内角A,B,C的对边分别为a,b,c,若b2c2a2bc.(1)求角A的大小;(2)若
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 成都彭州中储粮2025秋招网申填写模板含开放题范文
- 刘秀祥先进事迹心得体会
- 昌吉回族自治州中石油2025秋招面试半结构化模拟题及答案油气储运与管道岗
- 员工自行伤害合同8篇
- 客车租赁合同15篇
- 家长开放日活动小结8篇
- 2025年互联网行业大数据应用案例分析研究报告
- 2025年林业木材行业数字化林业管理技术应用报告
- 2025年社会公益行业社会公益活动与公益机构研究报告
- 2025老会计面试题目及答案
- 急性心力衰竭急救
- 2024年中国充电基础设施服务质量发展报告
- 2024小学科学教师职称考试模拟试卷及参考答案
- 农村房产放弃协议书
- 2025年中国热镀锡铜线数据监测报告
- 母女亲子断绝协议书范本
- 物联网导论(第四版)课件:感知技术
- 客户关系管理(CRM)系统项目总结报告范文
- 抖音外卖合同协议
- 装卸设备安全管理制度
- 做有温度的护理人
评论
0/150
提交评论