




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4. 确定圆的条件(1)三点定圆,确定圆的条件,类比确定直线的条件:,经过一点可以作无数条直线;,经过两点只能作一条直线.,A,A,B,确定圆的条件,想一想,经过一点可以作几个圆?经过两点,三点,呢?,1.作圆,使它过已知点A.你能作出几个这样的圆?,A,2.作圆,使它过已知点A,B.你能作出几个这样的圆?,A,B,确定圆的条件,2. 过已知点A,B作圆,可以作无数个圆.,经过两点A,B的圆的圆心在线段AB的垂直平分线上. 以线段AB的垂直平分线上的任意一点为圆心,这点到A或B的距离为半径作圆.,你准备如何(确定圆心,半径)作圆?,其圆心的分布有什么特点?与线段AB有什么关系?,A,B,确定圆的条件,3.作圆,使它过已知点A,B,C(A,B,C三点不在同一条直线上),你能作出几个这样的圆?,老师提示: 能否转化为2的情况:经过两点A,B的圆的圆心在线段AB的垂直平分线上.,你准备如何(确定圆心,半径)作圆?,其圆心的位置有什么特点?与A,B,C有什么关系?,B,C,经过两点B,C的圆的圆心在线段AB的垂直平分线上.,A,经过三点A,B,C的圆的圆心应该这两条垂直平分线的交点O的位置.,O,确定圆的条件,请你作圆,使它过已知点A,B,C(A,B,C三点不在同一条直线上).,以O为圆心,OA(或OB,或OC)为半径,作O即可.,请你证明你做得圆符合要求.,B,C,A,O,证明:点O在AB的垂直平分线上,,O就是所求作的圆,OA=OB.,同理,OB=OC.,OA=OB=OC.,点A,B,C在以O为圆心的圆上.,这样的圆可以作出几个?为什么?.,三点定圆,定理 不在一条直线上的三个点确定一个圆.,在上面的作图过程中.,老师期望: 将这个结论及其证明作为一种模型对待.,直线DE和FG只有一个交点O,并且点O到A,B,C三个点的距离相等,经过点A,B,C三点可以作一个圆,并且只能作一个圆.,A,B,C,过如下三点能不能做圆? 为什么?,讨论,不在同一直线上的三点确定一个圆,现在你知道了怎样要将一个如图所示的破损的圆盘复原了吗?,方法: 1、在圆弧上任取三点A、B、C。 2、作线段AB、BC的垂直平分线,其交点O即为圆心。 3、以点O为圆心,OC长为半径作圆。 O即为所求。,A,B,C,O,图中工具的CD边所在直线恰好垂直平分AB边,怎样用这个工具找出一个圆的圆心。,C,数学乐园,圆心,定义,经过三角形各个顶点的圆 叫做三角形的外接圆,外接圆 的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形。,如图:O是ABC的外接圆, ABC是O的内接三角形,点O是ABC的外心,外心是ABC三条边的垂直平分线的交点,它到三角形的三个顶点的距离相等。,三角形与圆的位置关系(一),因此,三角形的三个顶点确定一个圆,这圆叫做三角形的外接圆.这个三角形叫做圆的内接三角形.,外接圆的圆心是三角形三边垂直平分线的的交点,叫做三角形的外心.,老师提示: 多边形的顶点与圆的位置关系称为接.,三角形与圆的位置关系(二),分别作出锐角三角形,直角三角形,钝角三角形的外接圆,并说明与它们外心的位置情况,锐角三角形的外心位于三角形内,直角三角形的外心位于直角三角形斜边中点,钝角三角形的外心位于三角形外.,老师期望: 作三角形的外接圆是必备基本技能,定要熟练掌握.,四边形与圆的位置关系,如果四边形的四个顶点在一个圆,这圆叫做四边形的外接圆.这个四边形叫做圆的内接四边形.,我们可以证明圆内接四边的两个重要性质: 1.圆内接四边形对角互补. 2.圆内接四边形对的一个外角等于它的内对角. 3.对角互补的四边形内接于圆.,C,O,D,B,A,如图:圆内接四边形ABCD中,, BAD等于弧BCD所对圆心角的一半,BCD等于弧BAD所对圆心角的一半. 而弧BCD所对的圆心角+弧BAD所对的圆心角=360,,BADBCD,180.,同理ABCADC180.,圆内接四边形的对角互补.,四边形与圆的位置关系,如果延长BC到E,那么 DCEBCD ,180.,ADCE.,又 A BCD180,,四边形与圆的位置关系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校外小饭桌安全知识培训课件
- 校园超市消防知识培训总结课件
- 销售会计试题及答案
- 斜视护理试题及答案
- 北京预测培训基础知识课件
- 小学数学毕业考试题及答案
- 亲子母女测试题及答案
- 退休专家面试题及答案
- 幼儿法语试题及答案
- 空间向量试题及答案
- 智慧零碳园区解决方案
- 护士长夜查房记录表
- 重症患者的容量管理
- 长江三峡水利枢纽施工方案
- 中西医执业医师-综合笔试-中西医结合外科学-第二十三单元泌尿与男性生殖系统疾病
- 高中化学第一课课件高一上学期化学人教版
- 老服务伦理与礼仪讲课文档
- ERP项目实施进度计划表
- DB61T1730-2023公路路面煤矸石基层施工技术规范
- 第四章 土地估价方法-成本法
- GB/T 43198-2023食品包装用聚乙烯吹塑容器
评论
0/150
提交评论