




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2010届高考数学复习 强化双基系列课件,27平面向量的数量积,1、知识精讲: (1)平面向量的数量积的定义 向量 的夹角:已知两个非零向量 ,过O点作 , 则AOB=(001800)叫做向量 的夹角。 当且仅当两个非零向量 同方向时,=00,当且仅当反方向时=1800,同时 与其它任何非零向量之间不谈夹角这一问题。,垂直;如果 的夹角为900,则称垂直,记作 。 的数量积:两个非零向量 ,它们的夹角为,则 叫做称 的 数量积(或内积),记作 , 即 = 规定 =0 非零向量 当且仅当 时,=900,这时 =0。,在 方向上的投影: (注意 是射影) 所以, 的几何意义: 等于 的长度与 在 方向上的投影的乘积。,平面向量数量积的性质 设 是两个非零向量, 是单位向量,于是有: 当 同向时, ; 当 反向时, , 特别地, 。 (4) ,特别注意: (1)结合律不成立: ; (2)消去律不成立 不能得到 (3) =0不能得到 = 或 = 但是乘法公式成立: ; ;,2、重点、难点:平面向量的数量积及其几何意义,向量垂直的充要条件。利用平面向量的数量积处理有关长度、角度和垂直的问题。 3、思维方法:化归思想,数形结合。 4、特别提示:数量积不满足结合律。,例1:判断下列各命题正确与否: (1) ; (2) ; (3)若 ,则 ; 4)若 ,则当且仅当 时 成立; (5) 对任意向量 都成立; (6)对任意向量 ,有 。,例2:已知两单位向量 与 的夹角为 , 若 ,试求 与 的夹角。,例3已知 , , ,按下列条件求实数 的值。 (1) ;(2),例4:平面内有向量 点X为直线OP上的一个动点。 (1)当 取最小值时,求 的坐标; (2)当点X满足(1)的条件和结论时, 求 的值。,例5:已知向量 满足, 求证: 是正三角形。,课堂小结:向量数量积的意义,运算,性质必须十分的了解。 作业布置:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 桂林市重点中学2025年物理高一下期末复习检测试题含解析
- 上海理工大附中2025届高二物理第二学期期末质量检测模拟试题含解析
- 流水线安全管理办法规定
- 比亚迪安全制度管理办法
- 临沂市热力项目管理办法
- 2025届安徽省示范中学高一物理第二学期期末综合测试试题含解析
- 涡阳县地方债务管理办法
- 互联网公司资产管理办法
- 金融贷款薪酬管理办法
- 山上医疗废弃物管理办法
- 2025至2030年中国电动美容床行业市场运行格局及发展趋向研判报告
- 拉丁美洲和加勒比地区投资环境评价报告 2025
- (高清版)DB13∕T 5431-2021 装配式塑料水表井工程技术规程
- 北京市海淀区2023-2024学年高二下学期期末考试英语试卷(含答案)
- 2025乡村干部考试试题及答案
- 《云南教育强省建设规划纲要(2024-2035年)》解读培训
- 【KAWO科握】2025年中国社交媒体平台指南报告
- 弃土租地合同协议书
- 《并行计算技术》课件
- 超级食物市场发展趋势探索-全面剖析
- 《抗生素分类课件》课件
评论
0/150
提交评论