已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
14.3.2 公式法,学前温故,新课早知,1.平方差公式:(a+b)(a-b)= ,完全平方公式:(a+b)2= ,(a-b)2= . 2.把一个多项式化成了几个 的积的形式,像这样的式子变形叫做这个多项式的因式分解,也叫做把这个多项式 .,a2-b2,a2+2ab+b2,a2-2ab+b2,整式,分解因式,学前温故,新课早知,1.因式分解的平方差公式:a2-b2= ,即两个数的平方差,等于这两个数的和与这两个数的差的 . 2.下列各式运用平方差公式分解因式正确的是 ( ). A.x2-y2=(x+y)(x+y) B.x2-y2=(x+y)(x-y) C.-x2+y2=(-x+y)(-x-y) D.-x2-y2=-(x+y)(x-y) 3.把2x2-18分解因式,结果正确的是 ( ). A.2(x2-9) B.2(x-3)2 C.2(x+3)(x-3) D.2(x+9)(x-9),(a+b)(a-b),积,B,C,2x2-18=2(x2-9)=2(x+3)(x-3).,学前温故,新课早知,4.因式分解的完全平方公式: a2+2ab+b2= , a2-2ab+b2= . 即两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方. 5.下列各式能用完全平方公式分解的是( ). A.x2-1 B.x2+2x-1 C.x2+x+1 D.4x2+4x+1 6.如果把乘法公式的等号两边互换位置,就可以得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫做 .,(a+b)2,(a-b)2,D,公式法,分析应用公式法分解因式的关键是认清公式中的字母各代表什么.,【例2】 计算:1.992-2.992. 分析:1.99相当于平方差公式中的a,2.99相当于平方差公式中的b. 解:1.992-2.992=(1.99-2.99)(1.99+2.99)=(-1)4.98=-4.98.,2.分解因式的一般步骤 【例3】 分解因式: (1)x3-4x; (2)3x2-6x+3. 分析:(1)先提公因式x,再用平方差公式;(2)先提公因式3,再用完全平方公式. 解:(1)x3-4x=x(x2-4)=x(x+2)(x-2); (2)3x2-6x+3=3(x2-2x+1)=3(x-1)2.,1,2,3,4,5,6,1.下列多项式,能用公式法分解因式的是( ). A.x2-xy B.x2+xy C.x2+y2 D.x2-y2,答案,1,2,3,4,5,6,答案,1,2,3,4,5,6,3.把mx2-6mx+9m分解因式,下列结果正确的是( ). A.m(x+3)2 B.m(x+3)(x-3) C.m(x-4)2 D.m(x-3)2,答案,1,2,3,4,5,6,4.分解因式:a2-4b
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 动态网络中的校验和资源分配优化机制-洞察及研究
- 2025年保险科技行业智能风控与保险服务创新研究报告及未来发展趋势预测
- 2025年航天科技行业创新成果转化评估报告
- 2025年化妆品行业绿色化妆品与美妆科技发展研究报告及未来发展趋势预测
- 2025年化妆品行业个性化美妆与绿色美容研究报告及未来发展趋势预测
- 2026年中国扁桃体剪行业市场前景预测及投资价值评估分析报告
- 半年分红 协议书
- play协议书是什么
- 空调设备安装与定期维护协议
- 助财金协议书范本
- 医疗管理制度 - 浙江大学医学院附属第一医院·浙江省第一医院
- 《冬季养肺秘籍》课件
- 警察校园一年级安全讲座
- 2025年中建壹品物业运营限公司招聘管理单位笔试遴选500模拟题附带答案详解
- QC提高电气线管预留预埋施工质量
- 美国签证需要用到的个人简历模板(中英文)
- 【MOOC】光学发展与人类文明-华南师范大学 中国大学慕课MOOC答案
- LNG气化站工艺迁移及安装工程施工组织设计
- 中国心力衰竭诊断和治疗指南2024解读(完整版)
- 智能硬件产品设计与开发流程
- 水循环(精彩动画演示有解说)
评论
0/150
提交评论