




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第14讲函数模型及函数的综合应用夯实基础【p34】【学习目标】会运用函数的知识和函数思想解决有关函数的综合性问题,培养学生分析问题和解决问题的能力【基础检测】1小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶与以上事件吻合得最好的图象是()【解析】由于纵坐标是距学校的距离,随着时间的推移,到学校的距离越来越近,所以不可能是A;开始时匀速行驶,途中因交通堵塞停留了一段时间,所以D错;对于B,C,我们发现B中的两条斜线的斜率相近,没有体现出“为了赶时间加快速度行驶”,只有C符合题意,故选C.【答案】C2有一组实验数据如下表所示:x2.0134.015.16.12y38.011523.836.04则最能体现这组数据关系的函数模型是()Ay2x11 Byx21Cy2log2x Dyx3【解析】根据实验数据第一组(2.01,3),选项A,C,D显然不满足,故选B.【答案】B3据调查,苹果园地铁的自行车存车处在某星期日的存车量为4 000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元,若普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系是()Ay0.1x800(0x4 000)By0.1x1 200(0x4 000)Cy0.1x800(0x4 000)Dy0.1x1 200(0x4 000)【解析】y0.2x(4 000x)0.30.1x1 200(0x4 000)故选D.【答案】D4某市用37辆汽车往灾区运送一批救灾物资,假设以v km/h的速度直达灾区,已知该市到灾区公路线长400 km,为安全需要,两汽车间距不得小于 km,那么这批物资全部到达灾区的最短时间是()A. h B12 h C6 h D24 h【解析】设全部物资到达灾区所需的时间为t小时,由题意有,t212,当且仅当,即v km/h时,等号成立所以最短时间为12 h.故选B.【答案】B【知识要点】1几类函数模型函数模型函数解析式一次函数模型f(x)axb(a,b为常数,a0)反比例函数模型f(x)b(k,b为常数且k0)二次函数模型f(x)ax2bxc(a,b,c为常数,a0)指数函数模型f(x)baxc(a,b,c为常数,b0,a0且a1)对数函数模型f(x)blogaxc(a,b,c为常数,b0,a0且a1)幂函数模型f(x)axnb(a,b为常数,a0)2.三种函数模型的性质函数性质yax(a1)ylogax(a1)yxn(n0)在(0,)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大逐渐表现为与_y轴_平行随x的增大逐渐表现为与_x轴_平行随n值变化而各有不同值的比较存在一个x0,当xx0时,有logaxxnax典 例 剖 析【p34】考点1二次函数模型某商品每件成本9元,售价30元,每星期卖出72件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x(单位:元,0x30)成正比已知商品降低2元时,一星期多卖出8件(1)将一星期的商品销售利润表示成x的函数;(2)如何定价才能使一个星期的商品销售利润最大,是多少?【解析】(1)由题意得4,即每降价x元,则多卖出4x件设总利润为f(x)元,则f(x)(30x9)(724x)4(x18)(x21)4(x23x378)4x212x1 512(0x30)故销售利润f(x)表示成x的函数为f(x)4x212x1 512(0x30)(2)由(1)得f(x)4(x23x378)4491 51241 5211 521.所以当x时,f(x)取得最大值1 521元此时定价为3028.5元故定价为28.5元时,一星期的商品销售利润最大,是1 521元【小结】二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错考点2函数yx模型的应用某货轮匀速行驶在相距300海里的甲、乙两地间运输货物,运输成本由燃料费用和其他费用组成已知该货轮每小时的燃料费用与其航行速度的平方成正比(比例系数为0.5),其他费用为每小时800元,且该货轮的最大航行速度为50海里/小时(1)请将从甲地到乙地的运输成本y(元)表示为航行速度x(海里/小时)的函数;(2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?【解析】(1)由题意,每小时的燃料费用为0.5x2(0x50),从甲地到乙地所用的时间为小时,则从甲地到乙地的运输成本y0.5x2800(0x50),故所求的函数为y0.5x2800 150(0x50)(2)由(1)得y150150212 000,当且仅当x,即x40时取等号故当货轮航行速度为40海里/小时时,能使该货轮运输成本最少【小结】应用函数yx模型的关键点:(1)明确对勾函数是正比例函数f(x)ax与反比例函数f(x)叠加而成的(2)解决实际问题时一般可以直接建立f(x)ax的模型,有时可以将所列函数关系式转化为f(x)ax的形式(3)利用模型f(x)ax求解最值时,要注意自变量的取值范围,及取得最值时等号成立的条件考点3分段函数模型某网店经营的一种商品进价是每件10元,根据一周的销售数据得出周销售量P(件)与单价x(元)之间的关系如下图所示,该网店与这种商品有关的周开支均为25元(1)根据周销售量图写出P(件)与单价x(元)之间的函数关系式;(2)写出利润y(元)与单价x(元)之间的函数关系式;当该商品的销售价格为多少元时,周利润最大?并求出最大周利润【解析】(1)设当x时, Pk1xb1,代入点,得k12,b150,设当x时, Pk2xb2,代入点(20,10),(28,2), 得k21,b230, 故周销量P(件)与单价x(元)之间的函数关系式为P (2)yP25当x时, y2,所以x时, ymax;当x时, y75,可知y75在x单调递减,所以y75.由可知,当x时, ymax,故当该商品的销售价格为17.5元时,周利润最大为87.5元. 【小结】解决分段函数模型问题注意:(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成;(2)构造分段函数时,要力求准确、简捷,做到分段合理、不重不漏;(3)分段函数的最值是各段的最大(或最小)者的最大者(最小者)【能力提升】某湿地公园内有一条河,现打算建一座桥将河两岸的路连接起来,剖面设计图纸如下:其中,点A、E为x轴上关于原点对称的两点,曲线段BCD是桥的主体,C为桥顶,且曲线段BCD在图纸上的图形对应函数的解析式为y(x2,2),曲线段AB、DE均为开口向上的抛物线段,且A、E分别为两抛物线的顶点,设计时要求:保持两曲线在各衔接处(B、D)的切线的斜率相等(1)求曲线段AB在图纸上对应函数的解析式,并写出定义域;(2)车辆从A经B到C爬坡,定义车辆上桥过程中某点P所需要的爬坡能力为:MP(该点P与桥顶间的水平距离)(设计图纸上该点处的切线的斜率),其中MP的单位:米若该景区可提供三种类型的观光车:游客踏乘;蓄电池动力;内燃机动力它们的爬坡能力分别为0.8米,1.5米,2.0米又已知图纸上一个单位长度表示实际长度1米,试问三种类型的观光车是否都可以顺利过桥?【解析】(1)据题意,抛物线段AB与x轴相切,且A为抛物线的顶点,设A(a,0)(a0),其导函数为y2(xa)由曲线段BD在图纸上的图象对应函数的解析式为y(x2,2),又y,且B(2,1),所以曲线在B点处的切线斜率为,因为点B为衔接点,则解得所以曲线段AB在图纸上对应函数的解析式为y(x6)2(6x2)(2)设P(x,y)是曲线段AC上任意一点,若P在曲线段AB上,则通过该点所需要的爬坡能力(MP)1(x)(x6)(x3)29(6x2)令y1(x3)29(6x2),所以函数y1(x3)29(6x2)在区间6,3上为增函数,在区间3,2上是减函数,所以(MP)1max(米) .若P在曲线段BC上,则通过该点所需要的爬坡能力(MP)2(x)(2x0),令tx2,t0,4,则(MP)2,t0,4记y2,t0,4,当t0时,y20,而当0t4时,y2,所以当t4时,t8有最小值16,从而y2取最大值1,此时(MP)2max1(米),所以由,可知:车辆过桥所需要的最大爬坡能力为米,又因为0.81.52,所以“游客踏乘”的车辆不能顺利通过该桥,而“蓄电池动力”和“内燃机动力”的车辆可以顺利通过该桥【小结】本题考查应用问题的解法,关键是理解题意,找到模型方 法 总 结【p36】解函数应用问题的四步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择函数模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河南省新乡市封丘县第一中学2025-2026学年高二上学期开学考试历史试题(含答案)
- 偏旁部首的使用规则课件
- 你好小鸟课件
- 2025征地相关面试题答案及答案
- 子宫内膜异位症合并卵巢浆液性癌护理查房
- 企业班组安全培训课件
- 志愿服务项目设计与管理指南
- 企业消防安全培训课件
- 瑞安公务接待管理办法
- 留置监管分离管理办法
- 2025年职业指导师(中级)考试试卷:职业指导师考试辅导资料
- 2025秋部编版(2024)八年级上册道德与法治 【教学课件】1.1《认识社会生活》
- 2025年重庆市高考历史试卷真题(含答案)
- 小学科学社团创客空间计划
- 临床康复一体化讲课件
- 业主信息保密管理制度
- T/CNFAGS 9-2023水煤浆气化炉协同资源化处理固体废物环境保护技术规范
- 生命体征的观察与护理
- DBJD25-68-2019甘肃省安装工程预算定额地区基价第一册机械设备安装工程(含税)
- 《电子商务基础(第二版)》课件 第八章 电子商务应用新趋势
- 2025-2030彩妆产业行业市场现状供需分析及投资评估规划分析研究报告
评论
0/150
提交评论