




已阅读5页,还剩25页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二单元 匀速圆周运动 第4课时 专题:圆周运动向心力公式的应用,必修2 第四章 抛体运动与圆周运动,基础回顾,由于火车的质量比较大,火车拐弯时所需的向心力就很大,如果铁轨内外侧一样高,则外侧轮缘所受的压力很大,容易损坏实际中使_略高于_,从而可由_和_的合力提供火车转弯时所需要的向心力,答案:外轨 内轨 重力 铁轨的支持力,要点深化,1火车转弯规定速度 如右图所示,设内外轨间的距离为L,内外轨的高度差为h,火车转弯的半径为R,火车转弯的规定速度为v0,由图得向心力为 F合mgtan mgsin mgh/L, 当 时,火车拐弯,既不挤压内轨也不挤压外轨,则在h、L、R一定时,火车转弯的规定速度为,2对火车转弯侧压力的理解 (1)当火车以规定速度v0转弯时,F合等于向心力,这时轮缘与内、外轨均无侧压力 (2)当火车转弯的实际速度vv0时,F合小于向心力,外轨向内挤压轮缘,提供的侧 压力与F合共同充当向心力 (3)当火车转弯的实际速度vv0时,F合大于向心力,内轨向外挤压轮缘,提供的侧压力与F合共同充当向心力,基础回顾,1物体在竖直平面内做圆周运动时,设F是除重力外其它物体给运动物体的作用力则在最高点:_m ;在最低点:_m . 2汽车过拱形桥的运动也可以看做圆周运动,汽车过凸形桥到达桥的最高点时向心力由_和_的合力提供_M ;汽车过凸形桥时处于_重状态,答案:1mgF Fmg 2重力 支持力 MgF 失,要点深化,1圆形外轨、轻绳约束下小球在竖直面上做圆周运动的特点 如图所示,小球在圆形外轨、轻绳约束下沿着竖直面上做圆周运动在最高点,小球受到重力和外轨向下的压力或轻绳向下的拉力作用,小球恰能做圆周运动的临界条件是外轨向下的压力或轻绳向下的拉力等于零,小球的重力提供做圆周运动所需的向心力,即: . 即 是小球能经过圆周最高点的最小速度 (1)如果小球实际经过最高点时的速度v高 ,则重力不足以提供小球经过最高点所需的向心力,外轨要产生向下的压力N或轻绳产生向下的拉力T,且v高越大,N或T也越大 (2)如果小球实际经过最高点时的速度v高 ,则重力超过小球经过最高点所需的向心力,小球不能经过圆周的最高点(即在某处就脱离轨道做斜抛运动了),2圆形管道、轻杆约束下小球在竖直面上做圆周运动的特点 如下图所示,小球在圆形管道、轻杆约束下沿着竖直面上做圆周运动在最高点,小球受到重力和管道内、外轨道的弹力或轻杆的弹力作用,小球恰能做圆周运动的临界条件是v临界0. (1)如果小球实际经过最高点时的速度0v高 ,重力超过小球经过最高点所需的向心力,则内轨或轻杆将产生向上的支持力N,且v高越大,N越小 (2)如果小球实际经过最高点时的速度v高 ,管道或轻杆对小球没有力的作用 (3)如果小球实际经过最高点时的速度v高 ,则小球经过圆周的最高点所需的向心力大于重力,则外轨或轻杆将产生向下的压力N或拉力T,且v高越大,N或T越大.,3圆形内轨约束下小球在竖直面上做圆周运动的特点,如右图所示,小球在圆形内轨约束下沿着竖直面上做圆周运动在最高点,小球受到重力和管道内轨向上的弹力作用 (1)如果小球实际经过最高点时的速度0v高 ,重力超过小球经过最高点所需的向心力,则内轨将产生向上的支持力N,且v高越大,N越小小球还能通过最高点 (2)如果小球实际经过最高时的速度v高 ,内轨对小球没有力的作用,小球将开始脱离轨道随着小球往下运动时速度的增大,小球将不再接触轨道而做平抛运动,如右图所示,细线的一端系着质量为M0.6 kg的物体,静止于水平面,另一端通过光滑小孔吊着质量m0.3 kg的物体,M的中点与圆孔距离为0.2 m,并知M和水平面的最大静摩擦力为2 N现使物体M在此平面绕中心轴线转动,问:角速度在什么范围内m会处于静止状 态?(g10 m/s2),静摩擦力的特点是根据物体运动状态变换方向,改变大小,有人把静摩擦力的这一特点称为“适应性”由于静摩擦力这一特点的存在,导致在许多问题中出现了临界问题,解析:要使m静止,M应与平面相对静止考虑M能与水平面相对静止的两个极端状态: 当为所求范围的最小值时,M有向圆心运动的趋势,水平面对M的静摩擦力方向背离圆心,大小等于最大静摩擦力2 N,此时对M有 ,且Tmg. 解得12.9 rad/s 当为所求范围的最大值时,M有远离圆心运动的趋势,水平面对M的摩擦力方向指向圆心,且大小也为2 N,此时有 ,且Tmg. 解得 26.5 rad/s 故所求的范围为2.9 rad/s 6.5 rad/s. 答案:2.9 rad/s 6.5 rad/s,题型训练,1如右图所示,叠放在水平转台上的物体A、B、C的质量分别为3m、2m、m,A与B、B和C与转台间的动摩擦因数都为,A和B、C与转台中心的距离分别为r、1.5r,设本题的最大静摩擦力等于滑动摩擦力,若三者相对转台不动,下列说法正确的是( ) AB对A的摩擦力一定为3mg B转台对C的摩擦力一定为mg C转台的角速度一定满足关系 D转台的角速度一定满足关系,解析:由于题干中转速大小没有说明,故不能确定物体之间是否达到最大静摩擦力,AB都错C、D选项揭示要按最大静摩擦力研究所需的向心力中,对C有fmm21.5r,对AB整体有fm5m2r,对A有fm3m2r.而最大静摩擦中,对C有mg,对AB整体有5mg,对A有3mg.说明C最易发生滑动,故m21.5rmg,即转台的角速度一定满足关系 . 答案:C,分析这类问题的关键是确定临界状态,在临界状态下物体的受力情况和物体的运动情况,尤其值得注意的是临界状态下某个力不存在,绳恰好伸直,物体刚要离开某个面等问题的分析,如右图所示,两绳系一个质量为m0.1 kg的小球,两绳的另一端分别固定于轴上的A、B两处,上面绳长l2 m,两绳都拉直时与轴夹角分别为30和45,问球的角速度在什么范围内,两绳始终张紧?(g取10 m/s2),解析:选C小球为研究对象,对C受力分析如右图所示当BC恰好拉直,但BC线中T20时,设此时的角速度为1.则有: T1cos 30mg 由、解得12.40 rad/s 当AC恰好拉直,但AC线中T10时, 设此时的角速度为2.则有 T2cos 45mg 由、解得23.16 rad/s. 即球的角速度在2.40 rad/s3.16 rad/s范围内,两绳始终张紧 答案:2.40 rad/s3.16 rad/s,题型训练,2如右图所示,物体P用两根长度相等、不可伸长的细线系于竖直杆上,它随杆转动若转动角速度为,则( ) A只有超过某一值时,绳子AP才有拉力 B绳子BP的拉力随的增大而减少 C绳子BP的拉力一定大于绳子AP的拉力 D增大到某一程度时,绳子AP的张力大于BP的拉力,解析:设足够大,对小球进行受力分析,如图所示,由此看出:无论如何,绳子BP的拉力一定大于绳子AP的拉力,且TBP0,但TAP0则须足够大 答案:AC,其解题的思路是: (1)要掌握绳子束缚着小球能在竖直面内做圆周运动,则最高点的最小速度(临界速度)v . (2)要做好受力分析 (3)针对物体在最高点还是最低点都要运用牛顿第二定律列式 (4)掌握在竖直平面上做圆周运动的物体往往只有重力做功,运用机械能守恒定律列式解答,一长为l的轻绳拴一质量为m的小球,恰能在竖直面内做圆周运动,则它经过最低点时对轻绳的拉力为多大?,解析:小球,恰能在竖直面内做圆周运动,则它在最高点A的速度为v2必须符合: 物体从最高点向最低点运动的过程中 只有重力做功,机械能守恒定律,设 它在最低点的速度为v1,有: 设小球在最低点所受的拉力为T,根据 牛顿第二定律,有: 由以上各式解得:T6mg. 根据牛顿第三定律可知:经过最低点时对轻绳的拉力为6mg 答案:6mg,题型训练,3如右图所示轻杆的一端有一个小球,另一端有光滑的固定轴O,现给球一初速度,使球和杆一起绕O轴在竖直面内转动,不计空气阻力,用F表示球到达最高点时杆对小球的作用力,则F( ) A一定是拉力 B一定是推力 C一定等于零 D可能是拉力,可能是推力,也可能等于零,解析:最高点球受重力mg与杆的作用力F,由牛顿第二定律知mgF (v为球在最高点的速度,R为球做圆周运动的半径)当v 时,F0;当v 时,F0,即拉力;当v 时,F0,即推力 答案:D,如右图所示为中国著名体操运动员童非首次在单扛项目上实现了“单臂大回环”的示意图他用一只手抓住单扛,伸展身体,以单扛为转轴做圆周运动当时童非的质量为m65 kg,那么,在完成“单臂大绕环”的过程中,不计童非的单臂的质量,则单臂能承受的拉力至少为多大?(g取10 m/s2),错解:童非的运动为竖直平面上的圆周运动,半径为人的重心离扛的距离,设为L,则他到达最高点时的最小速度 设他到达最低点时的速度为v2,它由最高点转到最低点的过程中机械能守恒,有 解得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业环保技术与减排策略
- 工业节能减排的技术路径与措施
- 工作技能与专业能力的提升路径
- 工作之余的健康营养生活方式养成建议
- 工作压力下的时间分配艺术
- 工作场所技能需求的调研与分析
- 工程中遇到的技术难题与创新实践
- 工程中的计算机仿真技术应用
- 工程师培训中数据挖掘技术的应用
- 工程伦理在水利工程中的实践研究
- 校服投标文件技术方案
- 2024届广东省中山市实验中学数学高二第二学期期末学业质量监测试题含解析
- 数独4宫练习题(全)
- 《物流运输实务》课件
- 在幼儿园中打造有趣的数学学习环境
- 食品小作坊应急预案范本
- 2023全屋定制家具合同范文正规范本(通用版)
- 兰州市新初一分班英语试卷含答案
- 吾心可鉴 澎湃的福流
- 黄平县旧州飞机场红砖厂原址改扩建项目环评报告
- 统计预测与决策-南京财经大学中国大学mooc课后章节答案期末考试题库2023年
评论
0/150
提交评论