已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学与信息学院 2007级6班 邱菊 200708140634,第二课时 一元二次方程,公式法,一般地,对于一元二次方程 ax2+bx+c=0(a0),提示: 用公式法解一元二次方程的前提是: 1.必需是一般形式的一元二次方程: ax2+bx+c=0(a0). 2.b2-4ac0.,用公式法解一元二次方程的一般步骤:,3、代入求根公式 :,2、求出 的值,,1、把方程化成一般形式,并写出 的值。,4、写出方程的解:,特别注意:当 时无解,例1,解,注意 确定a,b,c 的值是,要注意符号,这里的b应为-3,例 2 解方程:,解:化简为一般式:,这里 a=1, b= , c= 3.,b2 - 4ac=( )2 - 413=0,即:x1= x2=,例3,解,注意: 这个方程有两个相等的实数根.,归纳,一元二次方程,因式分解法,温故而知新,1.我们已经学过了几种解一元二次方程 的方法?,2.什么叫分解因式?,把一个多项式分解成几个整式乘积 的形式叫做分解因式.,直接开平方法,配方法,X2=a (a0),(x+m)2=n (n0),公式法,分解因式法,当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解.这种用分解因式解一元二次方程的方法称为分解因式法.,提示: 1.用分解因式法的条件是:方程左边易于分解,而右边等于零; 2. 关键是熟练掌握因式分解的知识; 3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零.”,分解因式法,用分解因式法解方程: (1)5x2=4x;(2)x-2=x(x-2).,分解因式法解一元二次方程的步骤是:,2. 将方程左边因式分解;,3. 根据“至少有一个因式为零”,转化为两个一元一次方程.,4. 分别解两个一元一次方程,它们的根就是原方程的根.,1.化方程为一般形式;,1 .x2-4=0; 2.(x+1)2-25=0.,解:1.(x+2)(x-2)=0,x+2=0,或x-2=0.,x1=-2, x2=2.,淘金者,你能用分解因式法解下列方程吗?,2.(x+1)+5(x+1)-5=0,x+6=0,或x-4=0.,x1=-6, x2=4.,这种解法是不是解这两个方程的最好方法? 你是否还有其它方法来解?,解:设这个数为x,根据题意,得,x=0,或2x-7=0.,2x2=7x.,2x2-7x=0,x(2x-7) =0,先胜为快,一个数平方的2倍等于这个数的7倍,求这个数.,一般地,要在实数范围 内分解二次三项式ax2+bx+c(ao),只要用公式法求出相应的一元二次方程ax2+bx+c=0(ao),的两个根x1,x2,然后直接将ax2+bx+c写成a(x-x1)(x-x2),就可以了. 即ax2+bx+c= a(x-x1)(x-x2).,二次三项式 ax2+bx+c 的因式分解,当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解.这种用分解因式解一元二次方程的方法称为分解因式法. 分解因式法的条件是方程左边易于分解,而右边等于零,关键是熟练掌握因式分解的知识,理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零.” 因式分解法解一元二次方程的步骤是: (1)化方程为一般形式; (2)将方程左边因式分解; (3)根据“至少有一个因式为零”,得到两个一元一次方程. (4)两个一元一次方程的根就是原方程的根. 因式分解的方法,突出了转化的思想方法“降次”,鲜明地显示了“二次”转化为“一次”的过程.,解下列方程,参考答案:,归纳 配方法要先配方,再将次;通过配方法可以推出求根公式,公式法直接利用求根公式;因式分解法要先使方程一边为两个一次因式相乘,另一边为0,再
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025陕西宝鸡市眉县招聘社区专职工作人员10人备考题库完整答案详解
- 2025延安志丹县总工会社会工作者招聘备考题库(5人)及答案详解(历年真题)
- 2026年陕西省选调生招录备考题库(面向中国政法大学)含答案详解(巩固)
- 数字化教学环境搭建及案例分享
- 店长员工培训计划
- 应急值守安全员季度工作总结
- 2025四川广安岳池县兴隆镇招聘社区网格员1人备考题库及一套答案详解
- 展会现场管理与服务规范手册
- 2025年甘肃省平凉市崆峒区崆峒镇蒋家沟村招聘大学生村文书备考题库及参考答案详解一套
- 节能电器路灯节电器项目可行性研究报告(立项备案申请)
- 07-地铁成品保护专项施工方案
- Morisky服药依从性量表
- 2015GOLD慢性阻塞性肺疾病指南
- 小灵通漫游未来朗读指导(课件)
- GB/T 12556-2006塑料注射模模架技术条件
- ×××档案馆档案数字化加工项目技术方案
- RGF系列原子荧光光度计使用说明书
- 卫生责任区划分及检查考核标准
- 2023年石家庄市桥西区工会系统招聘考试笔试题库及答案解析
- 城镇燃气输配工程施工及验收规范CJJ33-2005
- SURPAC软件地质建模操作步骤
评论
0/150
提交评论