已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,基于TensorPCA的人脸识别方法的研究,本科毕业论文答辩演示稿,答辩人:周蒙,2,课题研究内容,一、研究目的 (一)身份识别,图(一) 人的面部特征,人脸数据库,3,(二)论证当前主流人脸识别算法,二维: 基于模板匹配的方法 基于奇异值特征方法 子空间分析方法 主成分分析(PCA)方法,三维: 基于图像特征方法 基于模型可变参数的方法,课题研究内容,4,方案设计,流程图:,训练样本,图(二) 系统流程图,5,运行过程,(一)人脸图像的预处理,人脸图像分割:将背景和人脸图区分开来。,6,人脸图像的去噪处理:去除图像编码和传输中产生的噪声。,运行过程,(a)有噪声的人脸图,(一)人脸图像的预处理,7,人脸的区域标定、选取:检测出人脸在图像中的位置、大小信息。,运行过程,(一)人脸图像的预处理,8,运行过程,(二)人脸特征的提取,TensorPCA(张量主成分分析):在传统主成分分析(PCA)方法上的扩展。,1、传统主成分分析方法,2、张量主成分分析,9,运行过程,(三)高阶奇异值分解(HOSVD),奇异值分解是线性代数中一种重要的矩阵分解,可以用来求高阶矩阵特征值时降阶,有两个重要应用:,1、求伪逆,2、矩阵近似值,10,研究结果,(一)基于TensorPCA算法 的人脸识别系统,1、利用ORL人脸库:避免因外界因素影响图像质量下降,直接使用ORL库中已经处理过的人脸图像。,2、MATLAB中实现人脸识别,利用MatLab中自带强大的矩阵处理函数。,11,研究结果,(一)基于TensorPCA算法 的人脸识别系统,图(三) 人脸识别检测系统,12,研究结果,(二)基于TensorPCA算法 的创新性,1、张量主成分分析用于人脸数据结构克服了数据向量化带来的缺点。,2、与常规的主成分分析算法相比,张量主成分分析算法在同样的压
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年德阳事业编考试真题及答案
- 临床执业医师资格考试笔试真题及答案
- 公共基础知识练习题
- 公路安全监理模拟试题
- 国家公务员考试复习资料
- 仪表技师考试试题
- 中考微机题型
- 医师定期考核法律法规试题及答案
- 南开15春学期《旅游规划与管理》在线作业答案
- 《微机系统与维护》模拟题常见的微机联网硬件
- 12YJ4-1 常用门窗标准图集
- GB/T 26480-2011阀门的检验和试验
- 产品经理系列第1课:产品经理入门课件
- 教师资格证考试心理学复习题
- 髋关节Harris评分表
- 学术规范与论文写作课件
- 2021年秋五年级数学上册四多边形的面积第5课时梯形的面积刘徽的出入相补原理拓展资料北师大版
- 第四讲:语篇的衔接和连贯
- 富士5000G11和G7S参数设定
- 医疗器械法规与常识培训
- 南方证券,大鳄的灭亡
评论
0/150
提交评论