《核聚变磁约束》PPT课件.ppt_第1页
《核聚变磁约束》PPT课件.ppt_第2页
《核聚变磁约束》PPT课件.ppt_第3页
《核聚变磁约束》PPT课件.ppt_第4页
《核聚变磁约束》PPT课件.ppt_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

磁 约 束 核 聚 变,原 理 与 发 展 前 沿,Magnetic confinement fusion,理科生环地 林楠,人类的-人造太阳梦,热核聚变 前言,核聚变(nuclear fusion),又称核融合、融合反应或聚变反应,是指由质量小的原子,主要是指氘或氚,在一定条件下(如超高温和高压)让核外电子摆脱原子核的束缚,让两个原子核能够互相吸引而碰撞到一起,发生原子核的互相聚合作用,生成新的质量更重的原子核(如氦)的反应。核聚变是核裂变相反的核反应形式。由于核聚变反应温度极高,目前尚无容器能够承受,因此科学家正在努力研究可控核聚变,使核聚变成为未来的主要能量来源。,目 录,核 聚 变 反 应 原 理,磁 约 束 核 聚 变 原理,核 聚 变 能 源 的 优 势,磁 约 束 核 聚 变 的 未 来 展 望,NO. 1,核 聚 变 反 应 原 理,核聚变反应原理,常温下,原子核之间由于斥力很难靠近,而当高温时,原子动能极大,可能使原子核间距非常小,从而发生核反应。,核聚变就像烧火,温度不够高,火很快就会熄灭,因此核聚变需要核裂变提供高温,在高温中发生一定量的核聚变,从而提供继续反应的温度。,氘与氚,氘在海洋中含量较为丰富,而氚则可以通过锂在中子的轰击下获得,利用一定弄的的锂和氘理论上可以形成氘-氚的链式反映,不过氘-氚反应极其危险,还有待改进。,目前使核聚变处于可控范围的手段主要有磁约束和惯性约束两种,磁约束主要利用磁场,惯性约束则主要依靠激光使外层气化,向内产生较大压力,再辅以高温发生核聚变,NO. 2,磁 约 束 核 聚 变 原 理,托 卡 马 克 型 磁 场 约 束 法,为实现磁力约束,需要一个能产生足够强的环形磁场的装置,这种装置就被称作“托克马克装置”TOKAMAK,也就是俄语中是由“环形”、“真空”、“磁”、“线圈”的字头组成的缩写。早在1954年,在原苏联库尔恰托夫原子能研究所就建成了世界上第一个托卡马克装置。貌似很顺利吧?其实不然,要想能够投入实际使用,必须使得输入装置的能量远远小于输出的能量才行,我们称作能量增益因子Q值。当时的托卡马克装置是个很不稳定的东西,搞了十几年,也没有得到能量输出,直到1970年,前苏联才在改进了很多次的托卡马克装置上第一次获得了实际的能量输出,不过要用当时最高级设备才能测出来,Q值大约是10亿分之一。别小看这个十亿分之一,这使得全世界看到了希望,于是全世界都在这种激励下大干快上,纷纷建设起自己的大型托卡马克装置,托 卡 马 克 的 前 世 今 生,欧洲建设了联合环-JET,苏联建设了T20(后来缩水成了T15,线圈小了,但是上了超导),日本的JT-60和美国的TFTR(托卡马克聚变实验反应器的缩写)。这些托卡马克装置一次次把能量增益因子(Q)值的纪录刷新,1991年欧洲的联合环实现了核聚变史上第一次氘氚运行实验,使用6:1的氘氚混合燃料,受控核聚变反应持续了2秒钟,获得了0.17万千瓦输出功率,Q值达0.12。1993年,美国在TFTR上使用氘、氚1:1的燃料,两次实验释放的聚变能分别为0.3万千瓦和0.56万千瓦,Q值达到了0.28。1997年9月,联合欧洲环创1.29万千瓦的世界纪录,Q值达0.60,持续了2秒。仅过了39天,输出功率又提高到1.61万千瓦, Q值达到0.65。三个月以后,日本的JT60上成功进行了氘氘反应实验,换算到氘氘反应,Q值可以达到1。后来,Q值又超过了1.25。这是第一次Q值大于1,尽管氘-氘反应是不能实用的(这个后面再说),但是托卡马克理论上可以真正产生能量了。在这个大环境下,中国也不例外,在70年代就建设了数个实验托卡马克装置环流一号(HL-1)和CT-6,后来又建设了HT-6,HT-6B,以及改建了HL1M,新建了环流2号。有种说法,说中国的托卡马克装置研究是从俄罗斯赠送设备开始的,这是不对的,HT6/HL1的建设都早于俄罗斯赠送的HT-7系统。HT-7以前,中国的几个设备都是普通的托卡马克装置,而俄罗斯赠送的HT-7则是中国第一个“超脱卡马克”装置。什么是“超托卡马克装置”呢?回过头来说,托卡马克装置的核心就是磁场,要产生磁场就要用线圈,就要通电,有线圈就有导线,有导线就有电阻。托卡马克装置越接近实用就要越强的磁场,就要给导线通过越大的电流,这个时候,导线里的电阻就出现了,电阻使得线圈的效率降低,同时限制通过大的电流,不能产生足够的磁场。托卡马克貌似走到了尽头。幸好,超导技术的发展使得托卡马克峰回路转,只要把线圈做成超导体,理论上就可以解决大电流和损耗的问题,于是,使用超导线圈的托卡马克装置就诞生了,这就是超托卡马克。目前为止,世界上有4个国家有各自的大型超托卡马克装置,法国的ToreSupra,俄罗斯的T-15,日本的JT-60U,和中国的EAST。除了EAST以外,其他四个大概都只能叫“准超托卡马克”,它们的水平线圈是超导的,垂直线圈则是常规的,因此还是会受到电阻的困扰。此外他们三个的线圈截面都是圆形的,而为了增加反应体的容积,EAST则第一次尝试做成了非圆型截面。此外,在建的还有德国的螺旋石-7,规模比EAST大,但是技术水平差不多。,托 卡 马 克 的 前 世 今 生,EAST位于中国合肥,是目前为止,超托卡马克反应体部分,唯一能给ITER提供实验数据的装置,他的结构和应用的技术与规划中的ITER(2005年正式确定的国际合作项目ITER,也就是国际热核实验反应堆的缩写,这个项目从1985年开始,由苏联、美国、日本和欧共同提出,目的是建立第一个试验用的聚变反应堆。(注意:ITER已经不是托卡马克装置了,而是试验反应堆,这是一大进步)最初方案是2010年建成一个实验堆,实现1500兆瓦功率输出,造价100亿美元。没想到因为各国想法不同,苏联解体,加上技术手段的限制,一直到了2000年也没有结果,其间美国中途退出,ITER出现胎死腹中的危险。直到2003年,能源危机加剧,各国又重视起来,首先是中国宣布加入了ITER计划,欧洲、日本和俄罗斯自然很高兴,随后美国宣布重返计划。紧接着,韩国和印度也宣布加入。)完全一样,没有的仅仅是换能部分。EAST解决了几个重要问题:第一次采用了非圆型垂直截面,目的是在不增加环形直径的前提下增加反应体的体积,提高磁场效率。第一次全部采用了液氦无损耗的超导体系。液氦是很贵的,只有在线圈材料上下功夫,尽量少用液氦,同时让液氦可以循环使用,尽量减少损耗的系统才可能投入实用。此外,EAST还是世界上第一个具有主动冷却结构的托卡马克,它的第一壁是主动冷却的,连接的是一个大型冷却塔,它的冷却水可以保证在长时间运行后将反应产生的热量带走,维持系统的温度平衡,一方面是为真正实现稳定的受控聚变迈出的重要一步,另一方面也是工程化的重要标志冷却塔换成汽轮机是可以发电的。结合一些相关资料,世界这个领域普遍认为EAST将是第一个能长时间稳定运行的,Q值能达到1的托卡马克装置,当然这可能还要1-2年的时间。就EAST来说,从某种意义上,它就是ITER主反应体大约1/4的一个原型实验装置。,托 卡 马 克 的 前 世 今 生,每一个作螺旋形运动的带电粒子,就是一个微小的螺旋形的电流。这个微小电流产生的磁场,无论是电子或离子,按法拉第电磁感应定律,基本上是和外加的感应磁场B0方向相反的,是一种抗磁性。这些单个粒子所形成的微小电流,叠加的结果,宏观地表现为,在圆柱表面上横向流动的电流I(图1)。这个表面电流产生的磁场BI把圆柱内部原有的磁场B0抵消一部分,结果圆柱内的磁场为Bi=B0-BI,圆柱外的磁场仍为B0。用磁场压强的概念,等离子体圆柱外的磁压强为B0/2,圆柱内的磁压强为B/2,式中为磁导率。圆柱外的磁压强大于圆柱内的磁压强,超过的部分即可平衡圆柱内的等离子体压强p,对它起到约束的作用。当时,等离子体可以维持宏观的平衡,既不扩张又不被压缩。 由此就可得到一种利用磁场约束等离子体的、理想化的设备。这是一个很长的圆筒形的真空室,内充稀薄的氘氚气体;外面绕上导线所成的直螺线管,真空室内产生磁场来约束其中产生的等离子体。宏观地看,等离子体平常没有磁性,但一旦加上磁场时,等离子体中的带电粒子运动就发生变化,形成如上所述的粒子回旋运动,产生抗磁性,表现为磁性等离子体一种抗磁性流体物质,从而被外磁场所约束。 按照磁场中粒子横越磁力线扩散的理论计算,圆筒形真空室中等离子体圆柱的直径不必大于1米,比不用磁场时,按热核等离子体中粒子自由飞行的情况所需的10米,缩小到10倍。这就是用磁场约束热核聚变等离子体的主要优点。但这种约束作用,只表现在垂直于磁场的方向;在平行于磁场的方向,等离子体仍没有得到约束,圆筒真空室仍需长达10米。等离子体沿圆筒真空室两端逸出损失,成为需要进一步研究解决的问题。,磁 约 束 核 聚 变 的 约 束 方 法,环 流 器 等 离 子 体 的 加 热,欧姆加热 利用环流器等离子体中流通的,用于产生磁场旋转变换的环形电流IP,对等离子体本身进行欧姆加热,这样的加热遵从理论上推广了的欧姆定律。随着温度的升高,环形等离子体的电阻迅速降低(这一点和金属导体的行为相反),加热效率下降。需要采取特殊措施,才有可能达到建造聚变堆所需的温度。目前,大量的实验研究仍在继续进行。 中性粒子束注入 将强流离子束,经过气体交换室进行电荷交换变成中性粒子束,然后注入磁约束装置。在环流器上一般用于在欧姆加热基础上的二级加热。是迄今为止取得温度最高的加热方法。所用的中性束,粒子能量为100千电子伏左右,功率为1030兆瓦。 射频波加热 利用等离子体外输入的,适当频率的各种电磁波,通过等离子体内电子回旋共振(频率约60120吉赫)、离子回旋共振(频率约30120兆赫)、或混合共振(频率2吉赫等)的机制,进行吸收加热。目前主要是原理性实验。准备中的大型实验,射频功率为330兆瓦;小型实验使用的功率可相应地减少。 将来采用的方法,有可能是几种加热方法有程序的、时间空间上的优化结合。在这类结合过程的研究中将会出现许多新的物理问题。,近年来环流器类型的磁约束装置实验及理论和计算分析得到的,关于磁约束等离子体的规律性知识,代表了等离子体物理学的广泛而较为深入的前沿新发展。 这方面主要的成果之一是,确定了一些重要参量在一定范围内适用的比例规律(也称变标规律、定标定律)。其中,首先是关于等离子体能量约束时间E和约束条件参量nE的比例规律。由最近的大型环流器归纳出来的结果表明,随着等离子体尺寸的增大,和nE的增加比等离子体尺寸的平方要快些。另一个实验结果,等离子体的温度平均地正比于单位体积内注入的二级加热的功率。最新一代大环流器目前已经达到的温度和约束参量略见表。在这个基础上,根据已经得到的,nE和T的比例规律,实现这些装置的目标将是可能的。这也就是说,受控热核聚变的科学可行性,将通过环流器上的实验,得到证实,目前计划将在20世纪80年代末实现。 关于磁约束热核聚变的等离子体物理学,主要内容有两个方面。一方面是历史性的知识积累,以受控热核聚变的科学可行性的验证为总目标的许多原理性实验,其中包括各种热核聚变途径的探索。除了环流器和开端的磁镜约束形态;还有其他多种磁约束途径正在研究中。第一代实用聚变堆的堆型尚待将来在改进型的环流器和其他途径中进行比较选定。另一方面是在这些探索、研究过程中现在已经形成的,物理学的一个新分支,磁约束等离子体物理学。,环 流 器 实 验 的 进展,仿 星 器 磁 场 约 束 法,仿星器 主要用来受控核聚变研究,是个巨大的电磁室。 仿星器的内部具有一定规律性。 仿星器对等离子体的约束主要借助了外导体的电流等产生的磁场。 仿星器装置的最大优点是能够连续稳定运行。 德国科学家认为,仿星器可能是最适合未来核聚变电厂的类型。德国正在建造的世界上最大的仿星器实验室被命名为Wandelstein X-7。 仿星器最早是由 Lyman Spitzer发明的并且在第二年建成。它在50-60年代十分流行。现在又逐渐进入人们的视野,最根本的原因是资源的日益枯竭,以及人们对普通核电厂能否安全稳定运行的担忧。,NO. 3,核 聚 变 能 源 的 优 势,核 聚 变 能 源 的 优势,相 比 核 裂 变 , 核 聚 变 几 乎 不 会 带 来 长 期 和 高 水 平 的 核 辐 射 污 染 等 环 境 问 题 , 也 不 产 生 核 废 料 , 更 不 会 带 来 温 室 气 体 , 而 且 其 原 料 可 直 接 取 自 海 水 中 的 氘 , 来 源 几 乎 取 之 不 尽 , 是 理 想 的 能 源 方 式 。,NO.1,磁 约 束 核 聚 变 的 未 来 展 望,磁 约 束 核 聚 变 的 未 来 展 望,中国的聚变事业经过二十多年的努力取得了很大的进展,最近几年发展非常迅猛,新装置的建设和一些物理研究成果引起国际同行的普遍关注特别是2006年EAST全超导非圆截面托卡马克一次工程调试成功,一次放电成功,随后在2007年初成功获得稳定可控的拉长偏滤器等离子体。EAST是目前世界上唯一投入运行并拥有类似于ITER而采用全超导磁体的托卡马克装置,具有开展与未来ITER运行和示范聚变堆密切相关问题研究的能力。EAST目前正在安装具有稳态热排除能力的、主动全冷却的内部结构。发展基于全平衡反演的等磁面等离子体控制

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论