




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数背景下的线段最值问题,漳州康桥学校九年级 吴瑕,(2015漳州卷第25题),如图,抛物线 与x轴交于A,B两点, 与y轴交于点C,点D为抛物线的顶点,请解决下列问题 (1)填空:点C的坐标为( , ), 点D的坐标为( , ); (2)设点P的坐标为(a,0), 当|PDPC|最大时, 求a的值并在图中标出点P的位置;,如图,抛物线 与x轴交于点A和 点B(3,0),与y轴交于点C(0,3). (1)求抛物线的解析式; (2)若点M是抛物线在x轴下方上的动点,过点M作 MN/y轴交直线BC于点N,求线段MN的最大值;,(2016漳州卷第24题),学习目标,知识目标: 掌握几何中的几个重要定理及二次函数的有关知识,根据问题建构数学模型,解决二次函数背景下的线段和、差等最值问题。 能力目标: 通过观察、分析、对比等方法,提高学生分析问题,解决问题的能力,进一步强化分类归纳综合的思想,提高综合能力。 情感目标: 通过自己的参与和教师的指导,体会及感悟化归与转化、数形结合、数学建模等数学思想方法,享受学习数学的快乐,提高应用数学的能力。,“将军饮马”问题,模型一,已知:如图,A(-1,0),B(3,0),C(0,3),抛物线经过点A、B、C,抛物线的顶点为D 求解析式和抛物线的顶点D;,模型应用,模型应用,(2)点 P 在对称轴上,PA+PC取最小值时,求点P的坐标;,变式:点P在对称轴上,PAC周长最小,求点P的坐标;,【思维点拨】要使PAC的周长最小,已知AC为定值,只需求一点P使得PAPC最小即可,步骤归纳:,1)找对称点,2)连线并求直线解析式,3)求点坐标,P,模型二:,l,A,B,P ,在 PAB中 P A-P B AB PA-PB=AB PA-PBPA-PB,探究二,问题:在直线l上,找出一点P,使|PAPB|的值最大。,基本解法:使A、B、P三点共线,基本原理:三角形两边之差小于第三边,基本思想:转化(化折为直),模型应用,(3) 点P在对称轴上,|PAPC|最大,求点P的坐标;,分析:第一步,应用模型 找到点P的位置;,第二步,求直线AC 的解析式;,第三步,将P点横坐 标代入直线BC的解 析式求出其纵坐标。,变式训练,(4) 点P在对称轴上,|PAPC|最小,求点P的坐标;,分析:第一步,找点P。要使|PAPC| 最小,只要PA=PC即可,由线段垂直 平分线的逆定理可知:点P在线段AC的 垂直平分线上,因此线段AC垂直平分 线与对称轴的交点即为所求的点P。,第二步,解析法或几何法求点P的 坐标。,变式训练,(5)点P在线段BC上,PA取最小值时,求点P的坐标;,分析:第一步,找点P, 利用直线外一点与直线 上各点连接的所有线段 中,垂线段最短 。,第二步,解析法或几何 法求点P的坐标。,链接中考,(2015漳州)如图,抛物线 与x轴交于 A,B两点,与y轴交于点C,点D为抛物线的顶点,请 解决下列问题 (1)填空:点C的坐标为( , ), 点D的坐标为( , ); (2)设点P的坐标为(a,0),当|PDPC|最大时, 求a的值并在图中标出点P的位置;,C(0,3),D(1,4),0,3,1,4,规范答题不失分,解:在三角形中两边之差小于第三边, 延长DC交x轴于点P, 设直线DC的解析式为y=kx+b,把D、C两点坐标代入可得 ,解得 , 直线DC的解析式为y=x+3, 将点P的坐标(a,0)代入得a+3=0, 求得a=3, 如图1,点P(3,0)即为所求,(2)设点P的坐标为(a,0),当|PDPC|最大时,求a的值并在图中标出点P的位置;,探究三,(6)点P在第一象限的抛物线上,PQx轴交BC于Q, 求PQ的最大值;,分析:第一步,设P点的坐标;,第二步,求直线BC的 解析式,得Q点坐标;,第三步,利用线段与 点坐标之间的关系, 得线段PQ的函数关 系式,最后求出最值。,竖直线段,水平线段,x1-x2,AB=,AB=,y1-y2,(纵坐标相减),(横坐标相减),上减下,右减左,=y1-y2,=x2-x1,函数模型,链接中考,(2016漳州)如图,抛物线 与x轴交于 点A和点B(3,0),与y轴交于点C(0,3). (1)求抛物线的解析式; (2)若点M是抛物线在x轴下方上的动点,过点M作 MN/y轴交直线BC于点N,求线段MN的最大值;,解:(1)将点B(3,0)、C(0,3) 代入抛物线 中,得:,,解得:,抛物线的解析式为,链接中考,(2)若点M是抛物线在x轴下方上的动点,过点M作 MN/y轴交直线BC于点N,求线段MN的最大值;,MNy轴,点N的坐标为 抛物线的解析式为 抛物线的对称轴为 点(1,0)在抛物线的图象上,1m3 线段,解:设点M的坐标为 设直线BC的解析式为 ,把点B(3,0) 代入,得:,直线BC的解析式为,当 时,线段MN取最大值,最大值为 ,今天我们研究了什么?,我们得到了哪些成果?,在研究过程中有何体会?,学习梳理,归纳方法,小结心得,1.线段和(或三角形周长)的最值问题:此类问题一般是利用轴对称的性质和两点之间线段最短确定最短距离 2.因动点而产生的线段差的最值问题,数形结合求解:当三点共线时有最值。 3.线段长度最值问题:把线段长用二次函数关系式表示出来再求最值(要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国区块链技术应用市场调研及商业化前景分析报告
- 2025-2030中国动力电池梯次利用商业模式及技术难点与政策环境评估报告
- 2025年贵港市属事业单位考试试卷
- 2025北京林业大学附属实验小学招聘1人考前自测高频考点模拟试题及一套答案详解
- 2025年智能牙刷的口腔健康监测
- 2025年智能交通系统的国际合作与标准制定
- 2025福建厦门启航培训服务有限公司招聘1人考前自测高频考点模拟试题及完整答案详解
- 2025年五常市公安局公开招聘警务辅助人员97人考前自测高频考点模拟试题及答案详解(历年真题)
- 2025福建南平市供电服务有限公司招聘52人考前自测高频考点模拟试题带答案详解
- 2025湖南省中南林业科技大学第一批招聘21人考前自测高频考点模拟试题附答案详解(完整版)
- 2025年度陕西煤业化工集团有限责任公司高校毕业生(技能操作岗)招聘1868人笔试参考题库附带答案详解
- 河北省金太阳2025-2026学年高三上学期9月联考化学试卷(含答案)
- 物业管理安全生产责任制细则
- 2025四川金川集团股份有限公司技能操作人员社会招聘400人考试参考试题及答案解析
- 2025年智能可穿戴设备生物传感技术在高原病治疗监测中的创新应用报告
- 2025浙江嘉兴市海宁经济开发区、海昌街道网格员招聘1人考试参考题库及答案解析
- 动物防疫法解读
- (正式版)DB32∕T 5160-2025 《传媒行业数据分类分级指南》
- 2025年检查检验项目分级审核制度
- 辽沈战役精简课件
- 第1课 高效传输秘籍-漫谈TCPIP和包交换教学设计-2023-2024学年初中信息技术(信息科技)七年级上册(2024)清华大学版(2024)(青海)
评论
0/150
提交评论