




已阅读5页,还剩26页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.1.3 两角和与差的正切,第3章 3.1 两角和与差的三角函数,学习目标 1.能利用两角和与差的正弦、余弦公式推导出两角和与差的正切公式. 2.能利用两角和与差的正切公式进行化简、求值、证明. 3.熟悉两角和与差的正切公式的常见变形,并能灵活应用.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 两角和与差的正切公式,思考1,怎样由两角和的正弦、余弦公式得到两角和的正切公式?,分子分母同除以cos cos ,便可得到.,答案,思考2,由两角和的正切公式如何得到两角差的正切公式?,答案 用替换tan()中的即可得到.,答案,梳理,知识点二 两角和与差的正切公式的变形,1.T()的变形 tan tan . tan tan tan tan tan() . tan tan . 2.T()的变形 tan tan . tan tan tan tan tan() . tan tan .,tan(),tan()(1tan tan ),tan(),tan()(1tan tan ),思考辨析 判断正误,答案,提示,答案,题型探究,类型一 正切公式的正用,例1 (1)已知tan 2,tan() ,则tan 的值为 .,答案,解析,3,答案,解析,因为,均为锐角, 所以(0,),,反思与感悟,(1)注意用已知角来表示未知角. (2)利用公式T()求角的步骤: 计算待求角的正切值. 缩小待求角的范围,特别注意隐含的信息. 根据角的范围及三角函数值确定角.,答案,解析,类型二 正切公式的逆用,1,答案,解析,反思与感悟,注意正切公式的结构特征,遇到两角正切的和与差,构造成与公式一致的形式,当式子出现 这些特殊角的三角函数值时,往往是“由值变角”的提示.,跟踪训练2 求下列各式的值:,解答,例3 (1)化简:tan 23tan 37 tan 23tan 37;,类型三 正切公式的变形使用,解答,解 方法一 tan 23tan 37 tan 23tan 37 tan(2337)(1tan 23tan 37) tan 23tan 37,解答,又,均为锐角, 0180, 60.,反思与感悟,两角和与差的正切公式有两种变形形式: tan tan tan()(1tan tan )或1tan tan .当 为特殊角时,常考虑使用变形形式,遇到1与正切的乘积的和(或差)时常用变形形式.合理选用公式解题能起到快速、简捷的效果.,答案,解析,若1tan Atan B0,则cos Acos Bsin Asin B0,即cos(AB)0. 0AB,,达标检测,1,2,3,4,5,答案,解析,1.若tan 3,tan ,则tan() .,1,2,3,4,5,7,答案,解析,1,2,3,4,5,答案,解析,1,2,3,4,5,答案,解析,又0AB,,1,2,3,4,5,1,2,3,4,5,答案,解析,tan()2,tan()2,,1.公式T()的结构特征和符号规律 (1)公式T()的右侧为分式形式,其中分子为tan 与tan 的和或差,分母为1与tan tan 的差或和. (2)符号变化规律可简记为“分子同,分母反”. 2.应用公式T()时要注意的问题 (1)公式的适用范围 由正切函数的定义可知,(或)的终边不能落在y轴上,即不为k (kZ).,规律与方法,(2)公式的逆用,(3)公式的变形用 只要用到tan tan ,tan ta
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 林业生态旅游生态艺术创作基地创新创业项目商业计划书
- 水果生态设计创新创业项目商业计划书
- 大豆生态农业示范基地创新创业项目商业计划书
- 植物汽车材料创新创业项目商业计划书
- 旅游小吃服务创新创业项目商业计划书
- 2024安全员考试题库检测试题打印附完整答案详解【考点梳理】
- 森林徒步旅行路线创新创业项目商业计划书
- 2025年电动移动式螺杆机行业研究报告及未来行业发展趋势预测
- 2025年高纯铜靶材行业研究报告及未来行业发展趋势预测
- 考点攻克人教版8年级数学上册《分式》章节练习试题(含详细解析)
- 公路工程监理规划
- 2025年荆州江陵县城市与乡村投资发展集团招【13人】高频重点提升(共500题)附带答案详解
- 火电建设项目工程档案管理办法
- 2023年银行系统反洗钱基础知识及相关法律知识竞赛试题库(附含答案共400题)
- 红楼梦第十五回课件
- 《城市轨道交通车辆 列车 视频监控系统》
- 政府专职消防员入职考试250题及答案
- 砖厂安全生产风险分级管控和隐患排查治理双体系方案全套资料汇编
- 35KV集电线路安全施工措施
- 四川九寨沟国家地质公园规划(2022-2035年)
- 七上数学期末26天复习计划
评论
0/150
提交评论