




已阅读5页,还剩26页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四节 数列求和、数列的综合应用,知识点一 求数列前n项和的方法,1.公式法,na1,2.倒序相加法,如果一个数列an,首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和即是用此法推导的.,3.错位相减法,如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和就是用此法推导的.,4.裂项相消法,把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.,5.分组转化求和法,若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和后相加减.,6.并项求和法,在一个数列的前n项和中,可两两结合求解,则称之为并项求和. 形如an(1)nf(n)类型,可采用两项合并求解.,一种思路:一般数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特殊数列有关或具备某种方法适用特点的形式,从而选择合适的方法求和.,两种方法:分组转化求和法;并项求和法.,(2)将一般数列设法转化为等差或等比数列,再分别求和若函数an的通项公式为an2n2n1,则数列an的前n项和为_.,答案 2n12n2,(3)形如an(1)nf(n)类型,可采用两项合并求解已知数列an的前n项和为Sn,通过公式an(1)n1n,则S17_.,解析 S17123456151617 1(23)(45)(1415)(1617) 11119. 答案 9,知识点二 数列的综合应用,1.数列应用题常见模型,(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差. (2)等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比. (3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,应考虑是an与an1之间的递推关系,还是Sn与Sn1之间的递推关系.,2.解答数列应用题的步骤,(1)审题仔细阅读材料,认真理解题意. (2)建模将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的特征、要求是什么. (3)求解求出该问题的数学解. (4)还原将所求结果还原到实际问题中.,一个易错点:在数列的实际应用问题中,要提炼出数列的各基本量,尤其项数n容易出错.,(4)某看台共有20排座位,后一排比前一排多2个座位,最后一排有60个座位,则该看台的总座位数为_.,答案 820,错位相减法求和方略,(1)一般地,如果数列an是等差数列,bn是等比数列,求数列anbn的前n项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列bn的公比,然后作差求解. (2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“SnqSn”的表达式.,(1)求数列an的通项公式; (2)令bnnan,求数列bn的前n项和Sn.,点评 用错位相减法求和时容易出现以下两点错误: (1)两式相减时最后一项因为没有对应项而忘记变号, (2)对相减后的和式的结构认识模糊,错把中间的n1项和当作n项和.,裂项相消法求和方略,(3)常见的裂项方法(其中n为正整数),点评 利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.,数列与函数综合问题的解题策略,(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题. (2)已知数列条件、解决函数问题一般要充分利用数列的范围公式、求和方法对式子化简变形,另外,解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解.,点评 解决此类问题要抓住一个中心函数,两个密切联系:一是数列和函数之间的密切联系,数列的通项公式是数列问题的核心,函数的解析式是研究函数问题的基础;二是方程、不等式与函数的联系,利用它们之间的对应关系进行灵活的处理.,数列的实际应用,方法点评 现实生活中涉及银行利率、企业股金、产品利润、人口
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 起重机设备保养环境监控工艺考核试卷及答案
- 钨钼电化学氧化还原工艺考核试卷及答案
- 起重机售后服务工艺流程考核试卷及答案
- 活性炭干燥工基础知识考核试卷及答案
- 类型教育视域下高职院校劳动教育的特征、内涵与构建
- 梅州用电业务办理时间及“获得电力”政策知识试卷
- 银行专技考试题库及答案
- 银行招聘系列试题及答案
- 银行招聘笔试试题及答案
- 银行信贷面试题库及答案
- 2025年度全国保密教育线上培训考试题库及答案(完整版)
- 题型专攻:平行线分线段成比例【八大题型】(原卷版)
- 宠物洗澡美容免责协议书
- 食品生产监管培训课件
- 教科版(2024)九年级上册物理教学计划含进度表
- 2025-2026学年北师大版(2024)小学数学三年级上册教学计划及进度表
- 公益诉讼案件汇报案件
- 出入境人员安全知识培训课件
- 2025至2030飞轮储能(FES)系统行业市场占有率及有效策略与实施路径评估报告
- 2025年南京市事业单位招聘考试卫生类预防医学专业知识试题
- GB/T 3836.1-2021爆炸性环境第1部分:设备通用要求
评论
0/150
提交评论