《极管及其基本电路》PPT课件.ppt_第1页
《极管及其基本电路》PPT课件.ppt_第2页
《极管及其基本电路》PPT课件.ppt_第3页
《极管及其基本电路》PPT课件.ppt_第4页
《极管及其基本电路》PPT课件.ppt_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(3-1),3 二极管及其基本电路,3.1 半导体的基本知识,3.3 二极管,3.4 二极管的基本电路及其分析方法,3.5 特殊二极管,3.2 PN结的形成及特性,(3-2),3.1 半导体的基本知识,3.1.1 半导体材料,3.1.2 半导体的共价键结构,3.1.3 本征半导体、空穴及其导电作用,3.1.4 杂质半导体,(3-3),3.1.1 半导体材料,根据物体导电能力(电阻率)的不同,来划分导体、绝缘体和半导体。,导体:自然界中很容易导电的物质称为导体,金属一般都是导体。,绝缘体:有的物质几乎不导电,称为绝缘体,如橡皮、陶瓷、塑料和石英。,半导体:另有一类物质的导电特性处于导体和绝缘体之间,称为半导体。典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。,(3-4),3.1.2 半导体的共价键结构,硅和锗的原子结构简化模型及晶体结构,价电子,共价键,(3-5),3.1.3 本征半导体、空穴及其导电作用,空穴共价键中的空位。,自由电子,空穴,T ,电子空穴对由热激发而产生的自由电子和空穴对。,空穴的移动空穴的运动是靠相邻共价键中的价电子依次填充空穴来实现的。,本征半导体化学成分纯净的半导体。它在物理结构上呈单晶体形态。,(3-6),本征半导体中载流子的浓度,在一定温度下本征半导体中载流子的浓度是一定的,并且自由电子与空穴的浓度相等。,本征半导体中载流子的浓度公式:,T=300 K室温下,本征硅的电子和空穴浓度: n = p =1.431010/cm3,本征锗的电子和空穴浓度: n = p =2.381013/cm3,ni= pi= K1T3/2 e -EGO/(2KT),本征激发,复合,动态平衡,(3-7),3.1.4 杂质半导体,在本征半导体中掺入某些微量元素作为杂质,可使半导体的导电性发生显著变化。掺入的杂质主要是三价或五价元素。掺入杂质的本征半导体称为杂质半导体。,N型半导体掺入五价杂质元素(如磷)的半导体。,P型半导体掺入三价杂质元素(如硼)的半导体。,(3-8),一、 N 型半导体,在硅或锗的晶体中掺入少量的 5 价杂质元素,如 磷、锑、砷等,即构成 N 型半导体(或称电子型 半导体)。,(3-9),二、 P 型半导体,在硅或锗的晶体中掺入少量的 3 价杂质元素,如硼、镓、铟等,即构成 P 型半导体。,空穴浓度多于电子浓度,即 p n。空穴为多数载流子,电子为少数载流子。,3 价杂质原子称为受主原子。,受主原子,空穴,(3-10),说明:,1. 掺入杂质的浓度决定多数载流子浓度;温度决定少数载流子的浓度。,3. 杂质半导体总体上保持电中性。,4. 杂质半导体的表示方法如下图所示。,2. 杂质半导体载流子的数目要远远高于本征半导体,因而其导电能力大大改善。,(a)N 型半导体,(b) P 型半导体,(3-11),杂质对半导体导电性的影响:,掺入杂质对本征半导体的导电性有很大的影响,一些典型的数据如下:,以上三个浓度基本上依次相差约106/cm3 。,4.961022/cm3,(3-12),3.2 PN结的形成及特性,3.2.2 PN结的形成,3.2.3 PN结的单向导电性,3.2.4 PN结的反向击穿,3.2.5 PN结的电容效应,3.2.1 载流子的漂移与扩散,(3-13),3.2.1 载流子的漂移与扩散,漂移运动: 由电场作用引起的载流子的运动称为漂移运动。,扩散运动: 由载流子浓度差引起的载流子的运动称为扩散运动。,(3-14),在一块半导体单晶上一侧掺杂成为 P 型半导体,另一侧掺杂成为 N 型半导体,两个区域的交界处就形成了一个特殊的薄层,称为 PN 结。,一、PN 结的形成,3.2.2 PN结的形成,(3-15),PN 结中载流子的运动,耗尽层,1. 扩散运动,2. 扩散运动形成空间电荷区,电子和空穴浓度差形成多数载流子的扩散运动。, PN 结,耗尽层。,(3-16),3. 空间电荷区产生内电场,空间电荷区正负离子之间电位差 Uho 电位壁垒; 内电场;内电场阻止多子的扩散 阻挡层。,4. 漂移运动,内电场有利于少子运动漂移。,少子的运动与多子运动方向相反,(3-17),5. 扩散与漂移的动态平衡,扩散运动使空间电荷区增大,扩散电流逐渐减小; 随着内电场的增强,漂移运动逐渐增加; 当扩散电流与漂移电流相等时,PN 结总的电流等于零,空间电荷区的宽度达到稳定。,对称结,即扩散运动与漂移运动达到动态平衡。,不对称结,(3-18),3.2.3 PN 结的单向导电性,1、 PN结 外加正向电压时处于导通状态,又称正向偏置,简称正偏。,(3-19),在 PN 结加上一个很小的正向电压,即可得到较大的正向电流,为防止电流过大,可接入电阻 R。,2、PN 结外加反向电压时处于截止状态(反偏),反向接法时,外电场与内电场的方向一致,增强了内电场的作用;,外电场使空间电荷区变宽;,不利于扩散运动,有利于漂移运动,漂移电流大于扩散电流,电路中产生反向电流 I ;,由于少数载流子浓度很低,反向电流数值非常小。,(3-20),反向电流又称反向饱和电流。对温度十分敏感, 随着温度升高, IS 将急剧增大。,(3-21),当 PN 结正向偏置时,回路中将产生一个较大的正向电流, PN 结处于 导通状态; 当 PN 结反向偏置时,回路中反向电流非常小,几乎等于零, PN 结处于截止状态。,综上所述:,可见, PN 结具有单向导电性。,(3-22),IS :反向饱和电流;VT :温度的电压当量 在常温(300 K)下,,3、 PN 结V-I 特性表达式,PN结所加端电压u与流过的电流i的关系为,(3-23),3.2.4 PN结的反向击穿,i = f (u )之间的关系曲线。,正向特性,反向特性,当PN结的反向电压增加到一定数值时,反向电流突然快速增加,此现象称为PN结的反向击穿。,热击穿不可逆,(3-24),3.2.5 PN结的电容效应,当PN上的电压发生变化时,PN 结中储存的电荷量 将随之发生变化,使PN结具有电容效应。,电容效应包括两部分,势垒电容,扩散电容,1. 势垒电容Cb,是由 PN 结的空间电荷区变化形成的。,(a) PN 结加正向电压,(b) PN 结加反向电压,(3-25),空间电荷区的正负离子数目发生变化,如同电容的放电和充电过程。,势垒电容的大小可用下式表示:,由于 PN 结 宽度 l 随外加电压 u 而变化,因此势垒电容 Cb不是一个常数。其 Cb = f (U) 曲线如图示。, :半导体材料的介电比系数; S :结面积; l :耗尽层宽度。,(3-26),2. 扩散电容 Cd,是由多数载流子在扩散过程中积累而引起的。,在某个正向电压下,P 区中的电子浓度 np(或 N 区的空穴浓度 pn)分布曲线如图中曲线 1 所示。,x = 0 处为 P 与 耗尽层的交界处,当电压加大,np (或 pn)会升高,如曲线 2 所示(反之浓度会降低)。,当加反向电压时,扩散运动被削弱,扩散电容的作用可忽略。,正向电压变化时,变化载流子积累电荷量发生变化,相当于电容器充电和放电的过程 扩散电容效应。,(3-27),综上所述:,PN 结总的结电容 Cj 包括势垒电容 Cb 和扩散电容 Cd 两部分。,Cb 和 Cd 值都很小,通常为几个皮法 几十皮法, 有些结面积大的二极管可达几百皮法。,当反向偏置时,势垒电容起主要作用,可以认为 Cj Cb。,一般来说,当二极管正向偏置时,扩散电容起主要作用,即可以认为 Cj Cd;,在信号频率较高时,须考虑结电容的作用。,(3-28),3.3 半导体二极管,在PN结上加上引线和封装,就成为一个二极管。,二极管按结构分有点接触型、面接触型和平面型,二极管的几种外形,(3-29),1、点接触型二极管,3.3.1 二极管的几种常见结构,PN结面积小,结电容小,用于检波和变频等高频电路。,(3-30),3、平面型二极管,往往用于集成电路制造工艺中。PN 结面积可大可小,用于高频整流和开关电路中。,2、面接触型二极管,PN结面积大,用于工频大电流整流电路。,(b)面接触型,4、二极管的代表符号,D,(3-31),3.3.2 二极管的伏安特性,二极管的伏安特性曲线可用下式表示,正向特性,反向特性,反向击穿特性,开启电压:0.5V 导通电压:0.7,一、伏安特性,开启电压:0.1V 导通电压:0.2V,(3-32),二、温度对二极管伏安特性的影响,在环境温度升高时,二极管的正向特性将左移,反向特性将下移。,二极管的特性对温度很敏感,具有负温度系数。,(3-33),3.3.3 二极管的参数,(1) 最大整流电流IF,(2) 反向击穿电压U(BR)和最高反向工作电压URM,(3) 反向电流IR,(4) 极间电容Cd,(5)反向恢复时间TRR,在实际应用中,应根据管子所用的场合,按其所承受的最高反向电压、最大正向平均电流、工作频率、环境温度等条件,选择满足要求的二极管。,(3-34),3.4 二极管的基本电路及其分析方法,3.4.1 简单二极管电路的图解分析方法,3.4.2 二极管电路的简化模型分析方法,(3-35),3.4.1 简单二极管电路的图解分析方法,二极管是一种非线性器件,因而其电路一般要采用非线性电路的分析方法,相对来说比较复杂,而图解分析法则较简单,但前提条件是已知二极管的V -I 特性曲线。,(3-36),例3.4.1 电路如图所示,已知二极管的V-I特性曲线、电源VDD和电阻R,求二极管两端电压vD和流过二极管的电流iD 。,解:由电路的KVL方程,可得,即,是一条斜率为-1/R的直线,称为负载线,Q的坐标值(VD,ID)即为所求。Q点称为电路的工作点,(3-37),1、二极管V-I特性的建模,3.4.2 二极管电路的简化模型分析方法,(3-38),4)小信号模型,vs =0 时, Q点称为静态工作点 ,反映直流时的工作状态。,vs =Vmsint 时(VmVDD), 将Q点附近小范围内的V-I 特性线性化,得到小信号模型,即以Q点为切点的一条直线。,(3-39),4、小信号模型,二极管工作在正向特性的某一小范围内时,其正向特性可以等效成一个微变电阻。,即,根据,得Q点处的微变电导,则,常温下(T=300K),二极管的微变等效电路,(3-40),2、模型分析法应用举例,1)整流电路,(a)电路图 (b)vs和vO的波形,(3-41),2)静态工作情况分析,理想模型,恒压模型,(硅二极管典型值),折线模型,(硅二极管典型值),设,(a)简单二极管电路 (b)习惯画法,(3-42),3)限幅电路,电路如图,R = 1k,VREF = 3V,二极管为硅二极管。分别用理想模型和恒压降模型求解,当vI = 6sint V时,绘出相应的输出电压vO的波形。,(3-43),4)开关电路,电路如图所示,求AO的电压值,解:,先断开D,以O为基准电位, 即O点为0V。,则接D阳极的电位为-6V,接阴极的电位为-12V。,阳极电位高于阴极电位,D接入时正向导通。,导通后,D的压降等于零,即A点的电位就是D阳极的电位。,所以,AO的电压值为-6V。,(3-44),5)小信号工作情况分析,图示电路中,VDD = 5V,R = 5k,恒压降模型的VD=0.7V,vs = 0.1sinwt V。(1)求输出电压vO的交流量和总量;(2)绘出vO的波形。,直流通路、交流通路、静态、动态等概念,在放大电路的分析中非常重要。,(3-45),3.5 稳压二极管,一、稳压管的伏安特性,(a)符号,(b)2CW17 伏安特性,DZ,(3-46),(1) 稳定电压UZ,(2) 动态电阻rZ,在规定的稳压管反向工作电流IZ下,所对应的反向工作电压。,rZ =VZ /IZ,(3)最大耗散功率 PZM,(4)最大稳定工作电流 IZmax 和最小稳定工作电流 IZmin,(5)温度系数VZ,二、稳压管的主要参数,(3-47),稳压电路,正常稳压时 UO =UZ,# 不加R可以吗?,# 上述电路UI为正弦波,且幅值大于UZ , UO的波形是怎样的?,1)设电源电压波动(负载不变),UI UOUZ IZ,UOUR IR ,2)设负载变化(电源不变) 略,如电路参数变化?,(3-48),例1:稳压二极管的应用,稳压二极管技术数据为:稳压值UZ=10V,Izmax=12mA,Izmin=2mA,负载电阻RL=2k,输入电压ui=12V,限流电阻R=200 ,求iZ。 若负载电阻变化范围为1.5 k - 4 k ,是否还能稳压?,(3-49),UZ=10V ui=12V R=200 Izmax=12mA Izmin=2mA RL=2k (1.5 k 4 k),iL=uo/RL=UZ/RL=10/2=5(mA) i= (ui - UZ)/R=(12-10)/0.2=10 (mA) iZ = i - iL=10-5=5 (mA) RL=1.5 k , iL=10/1.5=6.7(mA), iZ =10-6.7=3.3(mA) RL=4 k , iL=10/4=2.5(mA), iZ =10-2.5=7.5(mA),负载变化,但iZ仍在12mA和2mA之间,所以稳压管仍能起稳压作用,(3-50),例2:稳

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论