




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四节垂直关系考纲传真1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题1直线与平面垂直(1)定义:如果直线l与平面内的任意一条直线都垂直,则直线l与平面垂直(2)判定定理与性质定理文字语言图形语言符号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直l性质定理垂直于同一个平面的两条直线平行ab2.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角(3)范围:0,3平面与平面垂直(1)定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直(2)判定定理与性质定理文字语言图形语言符号语言判定定理如果一个平面经过另一个平面的一条垂线,则这两个平面垂直性质定理如果两个平面互相垂直,那么一个平面内垂直于它们交线的直线垂直于另一个平面l1直线与平面垂直的五个结论(1)若一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意直线. (2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面(3)垂直于同一条直线的两个平面平行(4)一条直线垂直于两平行平面中的一个,则这条直线与另一个平面也垂直(5)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面2三种垂直关系的转化 基础自测1(思考辨析)判断下列结论的正误(正确的打“”,错误的打“”)(1)直线l与平面内的无数条直线都垂直,则l.()(2)垂直于同一个平面的两平面平行()(3)直线a,b,则aB()(4)若,aa.()答案(1)(2)(3)(4)2设l,m,n均为直线,其中m,n在平面内,则“l”是“lm且ln”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件Allm,ln;反之,不一定成立,因为m,n不一定相交,故选A.3(教材改编)下列命题中不正确的是()A如果平面平面,且直线l平面,则直线l平面B如果平面平面,那么平面内一定存在直线平行于平面C如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面D如果平面平面,平面平面,l,那么lAA错误,l与可能平行或相交,其余选项均正确4(教材改编)如图所示,已知PA平面ABC,BCAC,则图中直角三角形的个数为_4PA平面ABC,PAAB,PAAC,PABC,则PAB,PAC为直角三角形由BCAC,且ACPAA,BC平面PAC,从而BCPC.因此ABC,PBC也是直角三角形5(教材改编)在三棱锥PABC中,点P在平面ABC中的射影为点O.(1)若PAPBPC,则点O是ABC的_心;(2)若PAPB,PBPC,PCPA,则点O是ABC的_心(1)外(2)垂(1)如图,PO平面ABC,连接OA,OB,OC,在RtPOA中,OA2PA2PO2,同理OB2PB2PO2,OC2PC2PO2.又PAPBPC,故OAOBOC,O是ABC的外心(2)由PAPB,PAPC可知PA平面PBC,PABC,又POBC,BC平面PAO,AOBC,同理BOAC,COAB故O是ABC的垂心直线与平面垂直的判定与性质【例1】如图所示,在四棱锥PABCD中,PA底面ABCD,ABAD,ACCD,ABC60,PAABBC,E是PC的中点证明:(1)CDAE;(2)PD平面ABE.证明(1)在四棱锥PABCD中,PA底面ABCD,CD平面ABCD,PACD又ACCD,PAACA,PA,AC平面PAC,CD平面PAC.而AE平面PAC,CDAE.(2)由PAABBC,ABC60,可得ACPA.E是PC的中点,AEPC.由(1)知AECD,且PCCDC,PC,CD平面PCD,AE平面PCD,而PD平面PCD,AEPDPA底面ABCD,AB平面ABCD,PAAB又ABAD,且PAADA,AB平面PAD,而PD平面PAD,ABPD又ABAEA,AB,AE平面ABE,PD平面ABE.规律方法证明直线和平面垂直的常用方法(1)利用判定定理(2)利用判定定理的推论(ab,ab)(3)利用面面平行的性质(a,a)(4)利用面面垂直的性质当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面(5)重视平面几何知识,特别是勾股定理的应用 如图所示,已知AB为圆O的直径,点D为线段AB上一点,且ADDB,点C为圆O上一点,且BCAC,PD平面ABC,PDDB求证:PACD证明因为AB为圆O的直径,所以ACCB,在RtACB中,由ACBC,得ABC30.设AD1,由3ADDB,得DB3,BC2,由余弦定理得CD2DB2BC22DBBCcos 303,所以CD2DB2BC2,即CDAB因为PD平面ABC,CD平面ABC,所以PDCD,由PDABD,得CD平面PAB,又PA平面PAB,所以PACD平面与平面垂直的判定与性质【例2】(2018北京高考节选)如图,在四棱锥PABCD中,底面ABCD为矩形,平面PAD平面ABCD,PAPD,PAPD,E是AD的中点求证:(1)PEBC;(2)平面PAB平面PCD证明(1)PAPD,E是AD的中点,PEAD又ABCD为矩形,ADBC,PEBC.(2)因为ABCD为矩形,所以ABAD又平面PAD平面ABCD,所以AB平面PAD,所以ABPD又PAPD,所以PD平面PAB又PD平面PCD,所以平面PAB平面PCD规律方法1.判定面面垂直的方法(1)面面垂直的定义;(2)面面垂直的判定定理(a,a)2在已知平面垂直时,一般要用性质定理进行转化在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直 (2015全国卷)如图,四边形ABCD为菱形,G为AC与BD的交点,BE平面ABCD(1)证明:平面AEC平面BED;(2)若ABC120,AEEC,三棱锥EACD的体积为,求该三棱锥的侧面积解(1)证明:因为四边形ABCD为菱形,所以ACBD因为BE平面ABCD,所以ACBE.故AC平面BED又AC平面AEC,所以平面AEC平面BED(2)设ABx,在菱形ABCD中,由ABC120,可得AGGCx,GBGD.因为AEEC,所以在RtAEC中,可得EGx.由BE平面ABCD,知EBG为直角三角形,可得BEx.由已知得,三棱锥EACD的体积VEACDACGDBEx3,故x2.从而可得AEECED.所以EAC的面积为3,EAD的面积与ECD的面积均为.故三棱锥EACD的侧面积为32.平行与垂直的综合问题【例3】如图1,在直角梯形ABCD中,ABCD,ABBC,AB2CD,DEAB,沿DE将AED折起到A1ED的位置,连接A1B,A1C,M,N分别为A1C,BE的中点,如图2. 图1图2(1)求证:DEA1B;(2)求证:MN平面A1ED;(3)在棱A1B上是否存在一点G,使得EG平面A1BC?若存在,求出的值;若不存在,说明理由解(1)证明:在直角梯形ABCD中,ABCD,ABBC,AB2CD,DEAB,沿DE将AED折起到A1ED的位置,DEA1E,DEBE,A1EBEE,DE平面A1BE,A1B平面A1BE,DEA1B(2)证明:取CD中点F,连接NF,MF,M,N分别为A1C,BE的中点,MFA1D,NFDE,又DEA1DD,NFMFF,DE平面A1DE,A1D平面A1DE,NF平面MNF,MF平面MNF.平面A1DE平面MNF,MN平面A1ED(3)取A1B的中点G,连接EG,A1EBE,EGA1B,由(1)知DE平面A1BE,DEBC,BC平面A1BE,EGBC,又A1BBCB,EG平面A1BC.故棱A1B上存在中点G,使得EG平面A1BC,此时1.规律方法证明折叠问题中的平行与垂直,关键是分清折叠前后图形的位置和数量关系的变与不变一般地,折叠前位于“折痕”同侧的点、线间的位置和数量关系折叠后不变,而折叠前位于“折痕”两侧的点、线间的位置关系折叠后会发生变化对于不变的关系可在平面图形中处理,而对于变化的关系则要在立体图形中解决 如图1所示,在RtABC中,ABC90,D为AC的中点,AEBD于点E(不同于点D),延长AE交BC于点F,将ABD沿BD折起,得到三棱锥A1BCD,如图2所示V 图1图2(1)若M是FC的中点,求证:直线DM平面A1EF;(2)求证:BDA1F;(3)若平面A1BD平面BCD,试判断直线A1B与直线CD能否垂直?请说明理由解(1)证明:因为D,M分别为AC,FC的中点,所以DMEF.又EF平面A1EF,DM平面A1EF,所以DM平面A1EF.(2)证明:因为A1EBD,EFBD,且A1EEFE,所以BD平面A1EF.又A1F平面A1EF,故BDA1F.(3)A1B与CD不能垂直因为平面A1BD平面BCD,平面A1BD平面BCDBD,EFBD,EF平面BCD,EF平面A1BDEFA1B,又EFDM,A1BDM.若A1BCD,则A1B平面BCD所以A1BBD,这与A1BD为锐角矛盾所以A1B与CD不能垂直1.(2016全国卷),是两个平面,m,n是两条直线,有下列四个命题:如果mn,m,n,那么.如果m,n,那么mn.如果,m,那么m.如果mn,那么m与所成的角和n与所成的角相等其中正确的命题有_(填写所有正确命题的编号)根据相关知识,对四个命题逐个判断对于,可以平行,可以相交也可以垂直,故错误对于,由线面平行的性质定理知存在直线l,nl,又m,所以ml,所以mn,故正确对于,因为,所以,没有公共点又m,所以m,没有公共点,由线面平行的定义可知m,故正确对于,因为mn,所以m与所成的角和n与所成的角相等因为,所以n与所成的角和n与所成的角相等,所以m与所成的角和n与所成的角相等,故正确2.(2018全国卷)如图,边长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M是上异于C,D的点(1)证明:平面AMD平面BMC;(2)当三棱锥MABC体积最大时,求面MAB与面MCD所成二面角的正弦值解(1)证明:由题设知,平面CMD平面ABCD,交线为CD因为BCCD,BC平面ABCD,所以BC平面CMD,所以BCDM.因为M为上异于C,D的点,且DC为直径,所以DMCM.又BCCMC,所以DM平面BMC.而DM平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 诉讼执行方案文案(3篇)
- 厂区排水检查方案(3篇)
- DB23-T2989-2021-玉米线虫矮化病病原长岭发垫刃线虫鉴定技术规程-黑龙江省
- 物业车辆清洗方案(3篇)
- 公司设备使用管理制度
- 具体社区管理方案(3篇)
- 小学疫情防疫管理制度
- 危重病人护理管理制度
- 施工方案工期(3篇)
- 公司文件格式管理制度
- 三级安全教育试题(公司级、部门级、班组级)
- 消化道出血护理查房7
- MOOC 模拟电子电路实验-东南大学 中国大学慕课答案
- 中班绘本《跑跑镇》微课件
- 基于岗位拓展模型和KPI的主基二元考核绩效体系的构建
- 初三英语毕业考试补考试卷
- 公司《质量管理标准化手册》
- 水平井管内砾石充填防砂 ppt课件
- 电子招生网站设计--网络课程设计
- 运动控制系统思考题参考答案阮毅
- 附件:10kV 及以下配网工程设计说明书(范本)
评论
0/150
提交评论