2020版高考物理一轮复习第6章第2节动量守恒定律及其应用教学案新人教版.docx_第1页
2020版高考物理一轮复习第6章第2节动量守恒定律及其应用教学案新人教版.docx_第2页
2020版高考物理一轮复习第6章第2节动量守恒定律及其应用教学案新人教版.docx_第3页
2020版高考物理一轮复习第6章第2节动量守恒定律及其应用教学案新人教版.docx_第4页
2020版高考物理一轮复习第6章第2节动量守恒定律及其应用教学案新人教版.docx_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2节动量守恒定律及其应用知识点一| 动量守恒定律的理解及应用1动量守恒的条件(1)系统不受外力或所受外力之和为零时,系统的动量守恒。(2)系统所受外力之和不为零,但当内力远大于外力时系统动量近似守恒。(3)系统所受外力之和不为零,但在某个方向上所受合外力为零或不受外力,或外力可以忽略,则在这个方向上,系统动量守恒。2动量守恒定律的内容如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变。3动量守恒的数学表达式(1)pp(系统相互作用前总动量p等于相互作用后总动量p)。(2)p0(系统总动量变化为零)。(3)p1p2(相互作用的两个物体组成的系统,两物体动量增量大小相等,方向相反)。(1)系统所受合外力的冲量为零,则系统动量一定守恒。()(2)动量守恒是指系统在初、末状态时的动量相等。()(3)物体相互作用时动量守恒,但机械能不一定守恒。()动量守恒定律的“五性”矢量性动量守恒定律的表达式为矢量方程,解题应选取统一的正方向相对性各物体的速度必须是相对同一参考系的速度(没有特殊说明要选地球这个参考系)。如果题设条件中各物体的速度不是相对同一参考系时,必须转换成相对同一参考系的速度同时性动量是一个瞬时量,表达式中的p1、p2必须是系统中各物体在相互作用前同一时刻的动量,p1、p2必须是系统中各物体在相互作用后同一时刻的动量,不同时刻的动量不能相加系统性研究的对象是相互作用的两个或多个物体组成的系统,而不是其中的一个物体,更不能题中有几个物体就选几个物体普适性动量守恒定律不仅适用于低速宏观物体组成的系统,还适用于接近光速运动的微观粒子组成的系统典例两磁铁各放在一辆小车上,小车能在水平面上无摩擦地沿同一直线运动。已知甲车和磁铁的总质量为0.5 kg,乙车和磁铁的总质量为1.0 kg。两磁铁的N极相对,推动一下,使两车相向运动。某时刻甲的速率为2 m/s,乙的速率为3 m/s,方向与甲相反。两车运动过程中始终未相碰。则:(1)两车最近时,乙的速度为多大?(2)甲车开始反向运动时,乙的速度为多大?解析:(1)两车相距最近时,两车的速度相同,设该速度为v,取乙车的速度方向为正方向。由动量守恒定律得m乙v乙m甲v甲(m甲m乙)v,所以两车最近时,乙车的速度为v m/s m/s1.33 m/s。(2)甲车开始反向时,其速度为0,设此时乙车的速度为v乙,由动量守恒定律得m乙v乙m甲v甲m乙v乙,得v乙 m/s2 m/s。答案:(1)1.33 m/s(2)2 m/s应用动量守恒定律的解题步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程)。(2)进行受力分析,判断系统动量是否守恒(或某一方向上是否守恒)。(3)规定正方向,确定初、末状态动量。(4)由动量守恒定律列出方程。(5)代入数据,求出结果,必要时讨论说明。考法1动量守恒的判断及应用1(多选)如图所示,A、B两物体质量之比mAmB32,原来静止在平板小车C上,A、B间有一根被压缩的弹簧,地面光滑,当弹簧突然释放后,则()A若A、B与平板车上表面间的动摩擦因数相同,A、B组成系统的动量守恒B若A、B与平板车上表面间的动摩擦因数相同,A、B、C组成系统的动量守恒C若A、B所受的摩擦力大小相等,A、B组成系统的动量守恒D若A、B所受的摩擦力大小相等,A、B、C组成系统的动量守恒BCD如果A、B与平板车上表面间的动摩擦因数相同,弹簧释放后A、B分别相对小车向左、向右滑动,它们所受的滑动摩擦力FA向右,FB向左,由于mAmB32,所以FAFB32,则A、B组成系统所受的外力之和不为零,故其动量不守恒,A选项错误。对A、B、C组成的系统,A、B与C间的摩擦力为内力,该系统所受的外力为竖直方向的重力、支持力,它们的合力为零,故该系统的动量守恒,B、D选项正确。若A、B所受摩擦力大小相等,则A、B组成的系统受到的外力之和为零,故其动量守恒,C选项正确。2.(2017全国卷)将质量为1.00 kg的模型火箭点火升空,50 g燃烧的燃气以大小为600 m/s的速度从火箭喷口在很短时间内喷出。在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)()A30 kgm/sB5.7102 kgm/sC6.0102 kgm/sD6.3102 kgm/sA由于喷气时间短,且不计重力和空气阻力,则火箭和燃气组成的系统动量守恒。燃气的动量p1mv0.05600 kgm/s30 kgm/s,则火箭的动量p2p130 kgm/s,选项A正确。3.如图在光滑水平面上叠放A、B两物体,其间有摩擦,mA2 kg,mB1 kg,速度的大小均为v010 m/s,设A板足够长,当观察到B做加速运动时,A的可能速度为()A2 m/sB3 m/sC4 m/sD5 m/sC因摩擦力作用,A、B必先做减速运动,因初动量总和为(210110) kgm/s10 kgm/s,故必是B先减速为零,后反向加速,最后与A一起向右运动,整个过程中,A一直减速。当B速度为零时,A速度为v1,由动量守恒定律得v15 m/s,A、B最终速度为v2 m/s3.3 m/s。可见,B做加速运动时,A的速度范围是3.3 m/svAm2时,v10,v20,碰撞后两物体沿同方向运动。(3)m1m2时,v10,碰撞后质量小的物体被反弹回来。典例(2019揭阳检测)如图所示,水平面上相距为L5 m的P、Q两点分别固定一竖直挡板,一质量为M2 kg的小物块B静止在O点,OP段光滑,OQ段粗糙且长度为d3 m。一质量为m1 kg的小物块A以v06 m/s的初速度从OP段的某点向右运动,并与B发生弹性碰撞。两物块与OQ段的动摩擦因数均为0.2,两物块与挡板的碰撞时间极短且均不损失机械能。重力加速度g取10 m/s2,求:(1)A与B在O点碰后瞬间各自的速度;(2)两物块各自停止运动时的时间间隔。【思路点拨】(1)A、B发生弹性碰撞,则碰撞过程中系统动量、动能均守恒。(2)两物块与挡板碰撞时间极短且均不损失机械能,说明两物块与挡板碰撞后返回的速度与碰前速度大小相等。(3)注意判断A与B能否再次发生碰撞。解析:(1)设A、B在O点碰后的速度分别为v1和v2,以向右为正方向。 由动量守恒定律得:mv0mv1Mv2碰撞前后动能相等,则得:mvmvMv解得:v12 m/s,方向向左,v24 m/s,方向向右。(2)碰后,两物块在OQ段减速时加速度大小均为:ag2 m/s2B经过t1时间与Q处挡板相碰,由运动学公式:v2t1atd得:t11 s(t13 s舍去)与挡板碰后,B的速度大小v3v2at12 m/s反弹后减速时间t21 s反弹后经过位移s11 m,B停止运动物块A与P处挡板碰后,以v42 m/s的速度滑上O点,经过s21 m停止所以最终A、B的距离sds1s21 m两者不会碰第二次在A、B碰后,A运动总时间tA3 sB运动总时间tBt1t22 s则时间间隔tABtAtB1 s。答案:(1)2 m/s,方向向左4 m/s,方向向右(2)1 s碰撞问题解题策略(1)抓住碰撞的特点和不同种类碰撞满足的条件,列出相应方程求解。(2)可熟记一些公式,例如“一动一静”模型中,两物体发生弹性正碰后的速度满足:v1v1、v2v1。(3)熟记弹性正碰的一些结论,例如,当两球质量相等时,两球碰撞后交换速度。当m1m2,且v20时,碰后质量大的速率不变,质量小的速率为2v1。当m1m2,且v20时,碰后质量小的球原速率反弹。考法1碰撞问题1两球A、B在光滑水平面上沿同一直线、同一方向运动,mA1 kg,mB2 kg,vA6 m/s,vB2 m/s。当A追上B并发生碰撞后,两球A、B速度的可能值是()AvA5 m/s,vB2.5 m/sBvA2 m/s,vB4 m/sCvA4 m/s,vB7 m/sDvA7 m/s,vB1.5 m/sB虽然题中四个选项均满足动量守恒定律,但A、D两项中,碰后A的速度vA大于B的速度vB,必然要发生第二次碰撞,不符合实际;C项中,两球碰后的总动能EkmAvmBv57 J,大于碰前的总动能Ek22 J,违背了能量守恒定律;而B项既符合实际情况,也不违背能量守恒定律,故B项正确。2(多选)(2019银川模拟)A、B两球沿一直线运动并发生正碰,如图所示为两球碰撞前、后的位移随时间变化的图象,a、b分别为A、B两球碰前的位移随时间变化的图线,c为碰撞后两球共同运动的位移随时间变化的图线,若A球质量是m2 kg,则由图象判断下列结论正确的是()A碰撞前、后A球的动量变化量为4 kgm/sB碰撞时A球对B球所施的冲量为4 NsCA、B两球碰撞前的总动量为3 kgm/sD碰撞中A、B两球组成的系统损失的动能为10 JABD根据题图可知,碰前A球的速度vA3 m/s,碰前B球的速度vB2 m/s,碰后A、B两球共同的速度v1 m/s,故碰撞前、后A球的动量变化量为pAmvmvA4 kgm/s,选项A正确;A球的动量变化量为4 kgm/s,碰撞过程中动量守恒,B球的动量变化量为4 kgm/s,根据动量定理,碰撞过程中A球对B球所施的冲量为4 Ns,选项B正确;由于碰撞过程中动量守恒,有mvAmBvB(mmB)v,解得mB kg,故碰撞过程中A、B两球组成的系统损失的动能为EkmvmBv(mmB)v210 J,选项D正确;A、B两球碰撞前的总动量为pmvAmBvB(mmB)v kgm/s,选项C错误。3如图所示,在光滑水平面上静置有质量均为m的木板AB和滑块CD,木板AB上表面粗糙,滑块CD上表面是光滑的圆弧,其始端D点切线水平且在木板AB上表面内,它们紧靠在一起。一可视为质点的物块P,质量也为m,从木板AB的右端以初速度v0滑上木板AB,过B点时速度为,又滑上滑块CD,最终恰好能滑到滑块CD圆弧的最高点C处,求:(1)物块滑到B处时木板的速度vAB;(2)滑块CD圆弧的半径R。解析:(1)物块由A点到B点,取向左为正方向,vB由动量守恒得mv0mvB2mvAB,则vAB。(2)物块由D点到C点,滑块CD与物块P组成的系统动量守恒,机械能守恒,则mm2mv共mm2mvmgR解得R。答案:(1)(2)4. (2018全国卷)汽车A在水平冰雪路面上行驶。驾驶员发现其正前方停有汽车B,立即采取制动措施,但仍然撞上了汽车B。两车碰撞时和两车都完全停止后的位置如图所示,碰撞后B车向前滑动了4.5 m,A车向前滑动了2.0 m。已知A和B的质量分别为2.0103 kg和1.5103 kg,两车与该冰雪路面间的动摩擦因数均为0.10,两车碰撞时间极短,在碰撞后车轮均没有滚动,重力加速度大小g10 m/s2。求:(1)碰撞后的瞬间B车速度的大小;(2)碰撞前的瞬间A车速度的大小。解析:(1)设B车的质量为mB,碰后加速度大小为aB。根据牛顿第二定律有mBgmBaB式中是汽车与路面间的动摩擦因数。设碰撞后瞬间B车速度的大小为vB,碰撞后滑行的距离为sB。由运动学公式有v2aBsB联立式并利用题给数据得vB3.0 m/s。(2)设A车的质量为mA,碰后加速度大小为aA。根据牛顿第二定律有mAgmAaA设碰撞后瞬间A车速度的大小为vA,碰撞后滑行的距离为sA。由运动学公式有v2aAsA设碰撞前的瞬间A车速度的大小为vA。两车在碰撞过程中动量守恒,有mAvAmAvAmBvB联立式并利用题给数据得vA4.3 m/s。答案:(1)3.0 m/s(2)4.3 m/s考法指导碰撞遵循的三条原则(1)满足动量守恒定律(2)机械能不增加,Ek1Ek2Ek1Ek2或(3)速度要合理同向碰撞:碰撞前,后面的物体速度大;碰撞后,前面的物体速度大(或相等)。相向碰撞:碰撞后两物体的运动方向不可能都不改变。考法2爆炸问题5(多选)向空中发射一枚炮弹,不计空气阻力,当炮弹的速度v0恰好沿水平方向时,炮弹炸裂成a、b两块,若质量较大的a的速度方向仍沿原来的方向,则()Ab的速度方向一定与原来速度方向相反B从炸裂到落地的这段时间内,a飞行的水平距离一定比b的大Ca、b一定同时到达水平地面D在炸裂过程中,a、b受到的爆炸力的大小一定相等CD炮弹炸裂前后动量守恒,选定v0的方向为正方向,则mv0mavambvb,显然vb0、vbva、vbva、vbva也都有可能,爆炸后,a、b都做平抛运动,由平抛运动规律知,下落高度相同则运动的时间相等,飞行的水平距离与速度大小成正比,故B错误,C正确;炸裂过程中,a、b之间的力为相互作用力,故D正确。6.(2018全国卷)一质量为m的烟花弹获得动能E后,从地面竖直升空。当烟花弹上升的速度为零时,弹中火药爆炸将烟花弹炸为质量相等的两部分,两部分获得的动能之和也为E,且均沿竖直方向运动。爆炸时间极短,重力加速度大小为g,不计空气阻力和火药的质量。求:(1)烟花弹从地面开始上升到弹中火药爆炸所经过的时间;(2)爆炸后烟花弹向上运动的部分距地面的最大高度。解析:(1)设烟花弹上升的初速度为v0,由题给条件有Emv设烟花弹从地面开始上升到火药爆炸所用的时间为t,由运动学公式有0v0gt联立式得t。(2)设爆炸时烟花弹距地面的高度为h1,由机械能守恒定律有Emgh1火药爆炸后,烟花弹上、下两部分均沿竖直方向运动,设爆炸后瞬间其速度分别为v1和v2。由题给条件和动量守恒定律有mvmvEmv1mv20由式知,烟花弹两部分的速度方向相反,向上运动部分做竖直上抛运动。设爆炸后烟花弹向上运动部分继续上升的高度为h2,由机械能守恒定律有mvmgh2联立式得,烟花弹向上运动部分距地面的最大高度为hh1h2。答案:见解析考法指导爆炸现象的三个规律动量守恒由于爆炸是在极短的时间内完成的,爆炸物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒动能增加在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加位置不变爆炸的时间极短,因而作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸前的位置以新的动量开始运动考法3反冲问题7.如图所示,质量为M的小船在静止水面上以速率v0向右匀速行驶,一质量为m的救生员站在船尾,相对小船静止。若救生员以相对水面速率v水平向左跃入水中,则救生员跃出后小船的速率为()Av0vBv0vCv0(v0v)Dv0(v0v)C以水面为参照系,根据动量守恒定律(Mm)v0mvMv1,可解得C正确。考法指导对反冲运动的三点说明作用原理反冲运动是系统内物体之间的作用力和反作用力产生的效果动量守恒反冲运动中系统不受外力或内力远大于外力,所以反冲运动遵循动量守恒定律机械能增加反冲运动中,由于有其他形式的能转化为机械能,所以系统的总机械能增加知识点三| 动量和能量观点的综合应用考法1“滑块弹簧”模型1如图所示,质量分别为1 kg、3 kg 的滑块A、B位于光滑水平面上,现使滑块A以4 m/s的速度向右运动,与左侧连有轻弹簧的滑块B发生碰撞。求二者在发生碰撞的过程中,(1)弹簧的最大弹性势能;(2)滑块B的最大速度。解析:(1)当弹簧压缩最短时,弹簧的弹性势能最大,此时滑块A、B同速。系统动量守恒,以向右为正方向,由动量守恒定律得mAv0(mAmB)v解得v m/s1 m/s弹簧的最大弹性势能即滑块A、B损失的动能EpmmAv(mAmB)v26 J。(2)当弹簧恢复原长时,滑块B获得最大速度,由动量守恒定律和能量守恒定律得mAv0mAvAmBvmmAvmBvmAv,解得vm2 m/s,向右。答案:(1)6 J(2)2 m/s,向右考法指导“滑块弹簧”模型四点注意(1)在能量方面,由于弹簧的形变会具有弹性势能,系统的总动能将发生变化,若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒。(2)在动量方面,系统动量守恒。(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统满足动量守恒,机械能守恒。(4)弹簧处于原长时,弹性势能为零。考法2“滑块平板”模型2(2019恩施模拟)如图所示,一长木板位于光滑水平面上,长木板的左端固定一挡板,木板和挡板的总质量为M3.0 kg,木板的长度为L1.5 m。在木板右端有一小物块,其质量m1.0 kg,小物块与木板间的动摩擦因数0.10,它们都处于静止状态。现令小物块以初速度v0沿木板向左滑动,重力加速度g取10 m/s2。(1)若小物块刚好能运动到左端挡板处,求v0的大小;(2)若初速度v03 m/s,小物块与挡板相撞后,恰好能回到右端而不脱离木板,求碰撞过程中损失的机械能。解析:(1)设木板和物块最后共同的速度为v由动量守恒定律得mv0(mM)v对木板和物块系统,由功能关系得mgLmv(mM)v2由以上两式解得v02 m/s。(2)同样由动量守恒定律可知,木板和物块最后也要达到共同速度v1mv0(Mm)v1设碰撞过程中损失的机械能为E,则对木板和物块

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论