已阅读5页,还剩28页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
6.2 算术平均数与几何平均数,本节目录,教材回顾夯实双基,考点探究讲练互动,考向瞭望把脉高考,知能演练轻松闯关,基础梳理,ab,正数,算术平均数,几何平均数,小,大,思考探究,2利用均值不等式求最值应注意什么条件? 提示:利用均值不等式求最值,一定要注意使用的条件:一正(各数为正),二定(和或积为定值),三相等(等号在允许取值范围内能取到),课前热身,答案:D,答案:C,答案:7,5若x2y1,则3x9y的最小值是_,【领悟归纳】 利用算术平均数与几何平均数的定理证明不等式,关键是所证不等式中必须具有“和”式或“积”式,通过将“和”式转化为“积”式或将“积”式转化为“和”式,从而达到放缩的效果必要时,也需要运用“拆、拼、凑”的技巧,同时应注意多次运用定理时等号能否取到,跟踪训练 1请你把上述不等式推广到一般情形,并证明你的结论,考点2 利用均值不等式求最值 合理拆分项或配凑因式是常用的技巧,而拆与凑的目标在于使等号成立,且每项为正值,必要时需出现积为定值或和 为定值,跟踪训练,考点3 利用均值不等式解决实际问题 在实际应用问题中求最值时,应先将要求最值的量表示为某个变量的函数,然后利用不等式的知识和方法求出该函数的最值,参考教材本章的引言,如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花园AMPN,要求B在AM上,D在AN上,且对角线MN过C点,已知AB3米,AD2米 (1)要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内? (2)当AN的长度是多少时,矩形AMPN的面积最小?并求最 小面积 【思路分析】 (1)设ANx,求出AM,建立不等式求x,(2)构造适合均值不等式的形式,【思维总结】把(x2)视为一个整体,用均值不等式求最小值.,跟踪训练,方法技巧,失误防范,命题预测 均值不等式是一个用途广泛的重要不等式,因而高考中作为重要考点久考不衰、常考常新均值不等式具有“和与积”相互转化的放缩功能,备受命题者的青睐,试题既有选择题、填空题,又有实际应用题客观题常常为单独命题的形式,其“干净利落”又不断出新,尤其与函数结合求最值,题目难 度中档 2012年高考中,湖南卷将均值不等式与函数的交点结合在一起,旨在考查自觉运用均值不等式的意识和能力 预测2014年高考将以选择题、填空题形式出现,考查学生运
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北斗系统标准协议书
- 私底下抱养协议书内容
- 采购优先协议书怎么写
- 2025版企业劳动合同范本下载参考
- 2025年短视频版权合作合同协议
- 2025年宠物肿瘤筛查行业创新技术趋势与早期诊断应用前景
- 2025总包商付款(分包)委托保证合同(试行)
- 2025年互联网信息服务提供合同协议
- 2025年跨境电商平台入驻代理行业服务费用分析报告
- 2025年低空经济「太空电梯」接驳站市场潜力与区域布局分析报告
- 骨科临床新技术实践总结
- 2025年大学《海洋技术》专业题库- 海洋信息技术在海洋资源管理中的应用
- 2025中国邮政校园招聘笔试历年参考题库附带答案详解
- 2025山东省财金投资集团有限公司招聘6人考试笔试参考题库附答案解析
- 外墙保温施工成本方案参考
- 2025年四川省定向乡镇公共基础知识试题及答案
- 企业应急预案范本
- 特种设备B类安全监察员考试题库及答案解析
- 2025海南陵水黎族自治县招聘社区专职人员58人(第一号)考试参考试题及答案解析
- 电动前移式叉车操作员考试题有答案
- 2025年统编版小学语文四年级上册期中考试综合测试卷(附答案)
评论
0/150
提交评论