免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平行四边形的判定教案1第1课时教学目的1使学生掌握用平行四边形的定义判定一个四边形是平行四边形;2理解并掌握用二组对边分别相等的四边形是平行四边形;3能运这两种方法来证明一个四边形是平行四边形教学重难点重点:平行四边形的判定定理;难点:掌握平行四边形的性质和判定的区别及熟练应用教学过程(一)复习提问:1什么叫平行四边形?平行四边形有什么性质?(学生口答,教师板书)2将以上的性质定理,分别用命题形式叙述出来(如果那么)根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?(二)新课:1平行四边形的判定:方法一(定义法):两组对边分别平行的四边形的平边形几何语言表达定义法:ABCD,ADBC,四边形ABCD是平行四边形解析:一个四边形只要其两组对边分别互相平行,则可判定这个四边形是一个平行四边形活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等方法二:两组对边分别相等的四边形是平行四边形设问:这个命题的前提和结论是什么?已知:四边形ABCD中,ABCD,ADBC求证:四边ABCD是平行四边形分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等连结BD易证三角形全等小结:用几何语言表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为:判定一:二组对边分别相等的四边形是平行四边形AB=CD,AD=BC,四边形ABCD是平行四边形2例题讲解:例:已知:如图3,E、F分别为平行四边形ABCD两边AD、BC的中点,连结BE、DF求证:分析:由我们学过平行四边形的性质中,对角相等,得若证明四边形EBFD为平行四边形,便可得到,哪么如何证明该四边形为平行边形呢?可通过证明ABECDF得BE=DF;由AD=BC,E、F分别为AD和BC的中点得ED=FB3练习:已知如图,E、F、G、H分别是平行四边形ABCD的边AB、BC、CD、DA上的点,且AECG,BFDH求证:四边形EFGH是平行四边形4本课小结:一个四边形二组对边分别平行或者相等的四边形是平行四边形这个判定定理来判定一个四边形是平行四边形第2课时教学目的:1掌握“一组对边平行且相等的四边形是平行四边形”这一判定定理进行有关的论证和计算;2培养学生的观察能力、动手能力自学能力、计算能力、逻辑思维能力;3在教学中渗透事物总是相互联系又相互区别的辩证唯物主义观点教学重难点:教学重点:掌握用“一组对边平行且相等的四边形是平行四边形”这一判定定理来判定一个四边形是平行四边形教学难点:判定定理的证明方法及运用教学过程:一复习引入:我们已学过哪些方法来判定一个四边形的平行四边形?(提问回答)二新课讲解设问:若一个四边形有一组对边平行且相等,能否判定这个四边形也是平行四边形呢?活动:课本探究内容,并用事准备好的纸条(纸条的长度相等),先将纸条放置不平行位置,让学生设想若二纸条的端点为四边形的顶点,则组成的四边形是不是平行四边形?若将纸条摆放为平行的位置,则同样用二纸条的端点为顶点组成的四边形是不是平行四边形?设问:我们能否用推理的方法证明这个命题是正确的呢?(让学生找出题设、结论,然后写出已知、求证及证明过程)小结:平行四边形判定方法三:前提:若一个四边形有一组对边平行且相等结论:这个四边形是一个平行四边形如图用几何语言表达为:AB=CD且ABCD四边形ABCD是平行四边形平行且相等可用符号“”,读作“平行且相等”ABCD,四边形ABCD是平行四边形三例题讲解:例:已知:E、F分别为平行四边形ABCD两边AD、BC的中点,连结BE、DF求证:分析:今天我们证明角相等,除了平行线,全等三角形外,又多了一个新方法,可以证明平行四边形对角相等,即只要四边形EBFD是平行四边形由已知平行四边形ABCD的性质可得DE/BF,又ADBC,E、F为中点则有DEBF,根据“一组对边平行且相等的四边形是平行四边形”的判定定理,可得四边形EBFD是平行四边形今天我们主要研究了利用边的关系来判定平行四边形,注意满足两个条件注意:若一组对边平行,另一组对边相等,是不可以判定为平行四边形的,它是梯形第3课时教学目的1掌握用“对角线互相平分的四边形是平行四边形”这一判定定理,会用这些定理进行有关的论证和计算;2理解“两组对角分别相等的四边形是平行四边形”这一判定定理,会用这些定理进行有关的论证和计算;3培养学生的观察能力、动手能力自学能力、计算能力、逻辑思维能力教学重难点教学重点:理解掌握“对角线互相平分的四边形是平行四边形,两组对角分别相等的四边形是平行四边形”这一判定定理教学难点:判定定理的证明方法及运用教学过程:一复习导入1用定义法证明一个四边形是平行四边形时,要什么条件?2用所学的判定方法一判定一个四边形的平行四边形的条件是什么?3平行四边形的对角线互相平分的逆命题如何表达?是否是真命题?二新课讲解:1设问:“对角线互相平分的四边形是平行四边形”这一命题的前提什么?结论又是什么?活动:用事先准备好的纸条按课本探究方法做,让学生判定这个四边形是否是平行四边形判定方法四:对角线互相平分的四边形是平行四边形这个方法的前提是什么?结论又是什么?已知:如图:在四边形ABCD中,AC、BD相交于O,OA=OC,OB=OD求证:四边形ABCD是平行四边形分析:证明这个四边形是平行四边形的方法有:(1)两组对边分别相等;(2)平行四边形的定义:两组对边分别平行(较简单的)板书证过程小结:由刚才证明可得,只要有对角线互相平分,可判定这个四边形是平行四边形几何语言表达:OA=OC,OB= OD,四边形ABCD是平行四边形2设问:若是两组对角分别相等的四边形,是不是平行四边形?前提是什么?结论是什么?已知:在四边形ABCD中,A =C,B=D求证:四边形ABCD是平行四边形(让学生板书,然后小结)练习:延长三角形ABC的中线BD至E,使DE=BD,连结AE、CE,如图求证:BAE=BCE证明方法:由对角线互相平分可证四边形ABCE为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年低空经济产业环境监测人才需求报告
- 2026-2031中国宠物饲料行业市场专项调研报告
- 2026-2031中国硅酸钙板市场专项调查报告
- 2026-2031中国光电子材料市场发展分析及未来投资潜力可行性报告
- 2026-2031中国工艺陶瓷市场深度调查与战略咨询报告
- 护理学题库及解析
- 2025继续教育公需课必修课考试题库附答案
- 2025年老年人慢性病严重精神障碍患者健康管理规范培训试题及答案
- 2025麻醉药品精神药品专项培训考核试题及答案
- 2025年电气人员面试试题及答案
- 2025城发环保能源(汝南)有限公司招聘4人笔试历年备考题库附带答案详解试卷3套
- 河北省沧衡名校联盟2025-2026学年高三上学期11月期中考试语文试题(含答案)
- 国开2025年《行政领导学》形考作业1-4答案
- 《政治经济学》全套PPT课件【完整版】
- (完整版)安全评价、预评价验收评价标书模板
- 颈源性耳鸣的临床研究-中日友好医院针灸科李石良课件
- 糊盒作业指导书
- (完整)污水清运合同
- 步-科eview触摸屏et070安装说明.bak
- 绍兴文理学院汉语言文学国家特色专业验收检查自评报告doc95
- 毕业设计-年产400吨土霉素发酵工段工艺设计
评论
0/150
提交评论