



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大初二数学教案正方形教学设计教学目标知识与技能1掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算2理解正方形与平行四边形、矩形、菱形的联系和区别过程与方法经历探索正方形有关性质、判定重要条件的过程。在观察中寻求新知,在探索中发展推理能力,逐步掌握说理的基本方法。情感态度与价值观通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力重点正方形的定义及正方形与平行四边形、矩形、菱形的联系 难点正方形与矩形、菱形的关系及正方形性质与判定的灵活运用 教学过程备 注教学设计 与 师生互动第一步:课堂引入1做一做:用一张长方形的纸片(如图所示)折出一个正方形学生在动手做中对正方形产生感性认识,并感知正方形与矩形的关系问题:什么样的四边形是正方形?正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形指出:正方形是在平行四边形这个大前提下定义的,其定义包括了两层意: (1)有一组邻边相等的平行四边形 (菱形)(2)有一个角是直角的平行四边形 (矩形)2【问题】正方形有什么性质?由正方形的定义可以得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形所以,正方形具有矩形的性质,同时又具有菱形的性质归纳、总结正方形的性质: 因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形,所以它具有这些图形性质的综合,引导学生从角、边、对角线上归纳总结。正方形性质定理1:正方形的四个角都是直角,四条边都相等。正方形性质定理2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角。第二步:应用举例:例1(教材P111的例4) 求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形已知:四边形ABCD是正方形,对角线AC、BD相交于点O(如图)求证:ABO、BCO、CDO、DAO是全等的等腰直角三角形证明: 四边形ABCD是正方形, AC=BD, ACBD,AO=CO=BO=DO(正方形的两条对角线相等,并且互相垂直平分)ABO、BCO、CDO、DAO都是等腰直角三角形,并且 ABO BCOCDODAO 例2 (补充)已知:如图,正方形ABCD中,对角线的交点为O,E是OB上的一点,DGAE于G,DG交OA于F求证:OE=OF 分析:要证明OE=OF,只需证明AEODFO,由于正方形的对角线垂直平分且相等,可以得到AOE=DOF=90,AO=DO,再由同角或等角的余角相等可以得到EAO=FDO,根据ASA可以得到这两个三角形全等,故结论可得 证明: 四边形ABCD是正方形, AOE=DOF=90,AO=DO(正方形的对角线垂直平分且相等)又 DGAE, EAO+AEO=EDG+AEO=90 EAO=FDO AEO DFO OE=OF 例3 (补充)已知:如图,四边形ABCD是正方形,分别过点A、C两点作l1l2,作BMl1于M,DNl1于N,直线MB、DN分别交l2于Q、P点求证:四边形PQMN是正方形分析:由已知可以证出四边形PQMN是矩形,再证ABMDAN,证出AM=DN,用同样的方法证AN=DP即可证出MN=NP从而得出结论证明: PNl1,QMl1, PNQM,PNM=90 PQNM, 四边形PQMN是矩形 四边形ABCD是正方形 BAD=ADC=90,AB=AD=DC(正方形的四条边都相等,四个角都是直角) 1+2=90又 3+2=90, 1=3 ABMDAN AM=DN 同理 AN=DP AM+AN=DN+DP即 MN=PN 四边形PQMN是正方形(有一组邻边相等的矩形是正方形)例4:已知:分别延长等腰直角三角形OAB的两条直角边AO和BO ,使AO=OC,BO=OD,求证:四边形ABCD是正方形。第二步:应用举例:例1(教材P111的例4) 求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形已知:四边形ABCD是正方形,对角线AC、BD相交于点O(如图)求证:ABO、BCO、CDO、DAO是全等的等腰直角三角形证明: 四边形ABCD是正方形, AC=BD, ACBD,AO=CO=BO=DO(正方形的两条对角线相等,并且互相垂直平分)ABO、BCO、CDO、DAO都是等腰直角三角形,并且 ABO BCOCDODAO 例2 (补充)已知:如图,正方形ABCD中,对角线的交点为O,E是OB上的一点,DGAE于G,DG交OA于F求证:OE=OF 分析:要证明OE=OF,只需证明AEODFO,由于正方形的对角线垂直平分且相等,可以得到AOE=DOF=90,AO=DO,再由同角或等角的余角相等可以得到EAO=FDO,根据ASA可以得到这两个三角形全等,故结论可得 证明: 四边形ABCD是正方形, AOE=DOF=90,AO=DO(正方形的对角线垂直平分且相等)又 DGAE, EAO+AEO=EDG+AEO=90 EAO=FDO AEO DFO OE=OF 例3 (补充)已知:如图,四边形ABCD是正方形,分别过点A、C两点作l1l2,作BMl1于M,DNl1于N,直线MB、DN分别交l2于Q、P点求证:四边形PQMN是正方形分析:由已知可以证出四边形PQMN是矩形,再证ABMDAN,证出AM=DN,用同样的方法证AN=DP即可证出MN=NP从而得出结论证明: PNl1,QMl1, PNQM,PNM=90 PQNM, 四边形PQMN是矩形 四边形ABCD是正方形 BAD=ADC=90,AB=AD=DC(正方形的四条边都相等,四个角都是直角) 1+2=90又 3+2=90, 1=3 ABMDAN AM=DN 同理 AN=DP AM+AN=DN+DP即 MN=PN 四边形PQMN是正方形(有一组邻边相等的矩形是正方形)例4:已知:分别延长等腰直角三角形OAB的两条直角边AO和BO ,使AO=OC,BO=OD,求证:四边形ABCD是正方形。 例5:已知:点A,、B,、C,、D,分别是正方形 ABCD四条边上的 点,并且AA,=BB,=CC,=DD。求证:四边形A,B,C,D,是正方形。第三步:、随堂练习1正方形的四条边_ _,四个角_ _,两条对角线_ _2下列说法是否正确,并说明理由ABCDEF对角线相等的菱形是正方形;( )对角线互相垂直的矩形是正方形;( )对角线垂直且相等的四边形是正方形;( )四条边都相等的四边形是正方形;( )四个角相等的四边形是正方形( )1 已知:如图,四边形ABCD为正方形,E、F分别为CD、CB延长线上的点,且DEBF求证:AFEAEF4如图,E为正方形ABCD内一点,且EBC是等边三角形,求EAD与ECD的度数第四步:课后反思:1已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF求证:EAAF2已知:如图,ABC中,C=90,CD平分ACB,DEBC于E,DFAC于F求证:四边形CFDE是正方形3已知:如图,正方形ABCD中,E为BC上一点,AF平分DAE交CD于F,求证:AE=BE+DF第五步:反馈归纳 (1)正方形是怎样的平行四边形?,有一组邻边相等,且有一个角是直角的平行四边形;(2)正方形是怎样的矩形?有一组邻边相等的矩形;(3)正方形是怎样的菱形?有一个角是直角的菱形;(4)明确四者之间的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年产550台血液成分分离机项目可行性研究报告
- 类脑神经形态CPU项目可行性研究报告
- (一检)泉州市2026届高中毕业班质量监测(一)语文试卷(含标准答案)
- 新房装修合同
- 防暴警察原理知识培训总结
- 网购服务协议范本
- 浙江省湖州2025年九年级上学期月考数学试题附答案
- 云平台协同管理-洞察及研究
- 园区工厂建设工程承包合同2篇
- 公司工业借款担保合同书3篇
- 2025年吉林省的劳动合同书范本
- DB46-T 720-2025 水务工程施工资料管理规程
- 经验萃取课件
- 金融标准化知识培训课件
- 2025广东惠州惠城区招聘社区工作站工作人员66人笔试备考试题及答案解析
- 洋务运动和边疆危机课件-2025-2026学年统编版八年级历史上册
- 2025新和县招聘社区工作者(第二批35人)笔试备考题库及答案解析
- 八年级历史上学期 导言课 课件(内嵌视频)
- 反电信诈骗课件
- 技能提升补贴个人申请表
- 小升初重点专题立体图形计算题(专项训练)-小学数学六年级下册苏教版
评论
0/150
提交评论