




已阅读5页,还剩146页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次规划 Quadratic Programming,二次规划,Questions,什么是二次规划? 如何求解?,二次规划,Definition,二次规划,(*),二次规划,二次规划,Remark,二次规划,等式约束二次规划问题的解法: 直接消去法(Direct Elimination Method) Lagrange乘子法,直接消去法(Direct Elimination Method),直接消去法,直接消去法,直接消去法,(*),直接消去法,直接消去法,直接消去法,Remark,直接消去法,Example,直接消去法,Solution,直接消去法,直接消去法,直接消去法,Remark,Lagrange乘子法,Lagrange乘子法,Lagrange乘子法,Lagrange乘子法,Lagrange乘子法,把c和b代入前面的最优解然后利用H R即可得。,Lagrange乘子法,Example,Lagrange乘子法,Solution,Lagrange乘子法,Lagrange乘子法,起作用集方法(Active Set Method),起作用集方法,正定二次规划,(*),定 理,起作用集方法,Theorem,起作用集方法,Theorem,(*),起作用集方法,Proof,起作用集方法,(a),起作用集方法,(b),满足(a)的 肯定满足(b),且为满足(b)的 的一部分,但满足(b)的解是唯一的,所以问题(b)的解就是问题(a)的解。,起作用集方法,Remark,起作用集方法,Questions,起作用集方法,起作用集方法,(*),起作用集方法,起作用集方法,(*),起作用集方法,起作用集方法,起作用集方法,起作用集方法,Questions,如何得到(*)?,起作用集方法,Answer,起作用集方法,Questions,起作用集方法,起作用集方法,起作用集方法,起作用集方法,起作用集方法,Algorithm,Algorithm,Algorithm,Algorithm,起作用集方法,起作用集方法,起作用集方法,起作用集方法,Example,起作用集方法,Solution,起作用集方法,起作用集方法,起作用集方法,起作用集方法,起作用集方法,起作用集方法,起作用集方法,起作用集方法,起作用集方法,起作用集方法,起作用集方法,起作用集方法,起作用集方法,序列二次规划法 (Sequential Quadratic Programming),(约束拟牛顿法 约束变尺度法),序列二次规划法,序列二次规划法,序列二次规划法,序列二次规划法,牛顿法求方程组 的解,牛顿法求方程组 的解,牛顿法求方程组 的解,牛顿法求方程组 的解,牛顿法求方程组 的解,牛顿法求方程组 的解,牛顿法求方程组 的解,牛顿法求方程组 的解,牛顿法求方程组 的解,牛顿法求方程组 的解,牛顿法求方程组 的解,牛顿法求方程组 的解,牛顿法求方程组 的解,序列二次规划法,序列二次规划法,序列二次规划法,Remark,序列二次规划法,Remark,序列二次规划法,Example,序列二次规划法,序列二次规划法,序列二次规划法,序列二次规划法,序列二次规划法,用信赖域方法求解二次规划子问题:,序列二次规划法,序列二次规划法,序列二次规划法,(*),序列二次规划法,序列二次规划法,序列二次规划法,序列二次规划法,序列二次规划法,序列二次规划法,(1),General Problem (GP),序列二次规划法,In constrained optimization, the general aim is to transform the problem into an easier sub-problem that can then be solved and used as the basis of an iterative process.,序列二次规划法,A characteristic of a large class of early methods is the translation of the constrained problem to a basic unconstrained problem by using a penalty function for constraints that are near or beyond the constraint boundary. In this way the constrained problem is solved using a sequence of parameterized unconstrained optimizations, which in the limit (of the sequence) converge to the constrained problem.,序列二次规划法,These methods are now considered relatively inefficient and have been replaced by methods that have focused on the solution of the Kuhn-Tucker (KT) equations. The KT equations are necessary conditions for optimality for a constrained optimization problem.,序列二次规划法,If the problem is a so-called convex programming problem, then the KT equations are both necessary and sufficient for a global solution point.,序列二次规划法,Referring to GP (1), the Kuhn-Tucker equations can be stated as,(2),序列二次规划法,The first equation describes a canceling of the gradients between the objective function and the active constraints at the solution point. For the gradients to be canceled, Lagrange multipliers are necessary to balance the deviations in magnitude of the objective function and constraint gradients.,序列二次规划法,Because only active constraints are included in this canceling operation, constraints that are not active must not be included in this operation and so are given Lagrange multipliers equal to zero. This is stated implicitly in the last two equations of Eq. (2).,序列二次规划法,The solution of the KT equations forms the Basis to many nonlinear programming algorithms. These algorithms attempt to compute the Lagrange multipliers directly. Constrained quasi-Newton methods guarantee super-linear convergence by accumulating second order information regarding the KT equations using a quasi-Newton updating procedure.,序列二次规划法,These methods are commonly referred to as Sequential Quadratic Programming (SQP) methods, since a QP sub-problem is solved at each major iteration (also known as Iterative Quadratic Programming, Recursive Quadratic Programming, and Constrained Variable Metric methods).,序列二次规划法,Sequential Quadratic Programming (SQP) A Quadratic Programming (QP) Subproblem SQP Implementation,序列二次规划法,Sequential Quadratic Programming (SQP) A Quadratic Programming (QP) Subproblem SQP Implementation,序列二次规划法,Sequential Quadratic Programming (SQP)SQP methods represent the state of the art in nonlinear programming methods. Schittkowski , for example, has implemented and tested a version that outperforms every other tested method in terms of efficiency, accuracy, and percentage of successful solutions, over a large number of test problems.,序列二次规划法,Based on the work of Biggs , Han, and Powell , the method allows you to closely mimic Newtons method for constrained optimization just as is done for unconstrained optimization. At each major iteration, an approximation is made of the Hessian of the Lagrangian function using a quasi-Newton updating method.,序列二次规划法,This is then used to generate a QP sub-problem whose solution is used to form a search direction for a line search procedure. The general method, however, is stated here.,序列二次规划法,Given the problem description in GP (1) the principal idea is the formulation of a QP sub-problem based on a quadratic approximation of the Lagrangian function.,序列二次规划法,Here you simplify Eq. (1) by assuming that bound constraints have been expressed as inequality constraints. You obtain the QP sub-problem by linearizing the nonlinear constraints.,序列二次规划法,Sequential Quadratic Programming (SQP) A Quadratic Programming (QP) Subproblem SQP Implementation,序列二次规划法,序列二次规划法,This sub-problem can be solved using any QP algorithm. The solution is used to form a new iterate,.,序列二次规划法,序列二次规划法,序列二次规划法,A nonlinearly constrained problem can often be solved in fewer iterations than an unconstrained problem using SQP. One of the reasons for this is that, because of limits on the feasible area, the optimizer can make informed decisions regarding directions of search and step length.,序列二次规划法,序列二次规划法,This was solved by an SQP implementation in 96 iterations compared to 140 for the unconstrained case.,序列二次规划法,Sequential Quadratic Programming (SQP) A Quadratic Programming (QP) Subproblem SQP Implementation,序列二次规划法,The SQP implementation consists of three main stages, which are discussed briefly in the following subsection
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030中国野营塑胶用品行业产业运行态势及投资规划深度研究报告
- 2025至2030中国自缷车行业市场现状分析及竞争格局与投资发展报告
- 2025至2030中国自卸拖车行业产业运行态势及投资规划深度研究报告
- 2025至2030中国自动化油箱清洁系统行业发展趋势分析与未来投资战略咨询研究报告
- 2025至2030中国脂联素检测行业发展趋势分析与未来投资战略咨询研究报告
- 2025至2030中国网络游戏行业市场深度调研及竞争格局与投资报告
- 2025高三上学期班主任学生档案管理计划
- 2025至2030中国织物基层压板(SRBF)行业产业运行态势及投资规划深度研究报告
- 2025至2030中国组合健身器械行业市场深度研究及发展前景投资可行性分析报告
- 小学入队仪式流程模板他
- 中国机器人工程市场调研报告2025
- 2025年金融科技企业估值方法与投资策略在金融科技企业并购中的应用案例报告
- 农文旅项目可行性研究报告
- 《无人机介绍》课件
- 2025-2030中国硼酸行业市场发展现状及竞争格局与投资研究报告
- 学校中层干部选拔聘用实施方案中层干部选聘实施方案2
- 生物必修1教师用书
- 园艺植物育种学知到课后答案智慧树章节测试答案2025年春浙江大学
- 《电力机车制动系统检修与维护》课件 项目二任务四检修中继阀
- GB/T 15683-2025粮油检验大米直链淀粉含量的测定
- 2025吉林省安全员C证考试(专职安全员)题库及答案
评论
0/150
提交评论