




已阅读5页,还剩30页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
26.1.4二次函数 y=ax2+bx+c的图象和性质,x,y,O,函数y=ax+bx+c的图象,我们知道,像二次函数y=a(x-h)2+k的图象,顶点坐标为(h,k),通过平移抛物线y=ax2可以得到。 二次函数y=3x2-6x+5也能化成这种形式吗?,探究,怎样把函数y=3x2-6x+5的转化成y=a(x-h)2+k的形式?,函数y=ax+bx+c的图象,配方:,提取二次项系数,配方:加上再减去一次项系数绝对值一半的平方,整理:前三项化为平方形式,后两项合并同类项,化简:去掉中括号,老师提示: 配方后的表达式通常称为顶点式,探究,简单说成:一提、二配、三化简,函数y=3x2-6x+5的图象特征,2.根据配方式(顶点式)确定开口方向,对称轴,顶点坐标.,a=30,开口向上; 对称轴:直线x=1; 顶点坐标:(1,2).,探究,例.求二次函数y=ax+bx+c的对称轴和顶点坐标,函数y=ax+bx+c的顶点式,一般地,对于二次函数y=ax+bx+c,我们可以利用配方法推导出它的对称轴和顶点坐标.,探究,例.求次函数y=ax+bx+c的对称轴和顶点坐标,函数y=ax+bx+c的顶点式,配方:,提取二次项系数,配方:加上再减去一次项系数绝对值一半的平方,整理:前三项化为平方形式,后两项合并同类项,化简:去掉中括号,探究,顶点坐标公式,二次函数y=ax+bx+c的图象是一条抛物线.,探究,配方得:,老师提示: 这个结果通常称为顶点坐标公式.,4,4,1、写出下列抛物线的开口方向、对称轴及顶点坐标(P12练习),练习:,(-1/3,-1/3),(-1,1),(2,0),(4,-5),请你总结函数 函数y=ax2+bx+c(a0) 的图象和性质,二次函数y=ax2+bx+c(a0)的图象和性质,.顶点坐标与对称轴,.位置与开口方向,.增减性与最值,抛物线,顶点坐标,对称轴,位置,开口方向,增减性,最值,y=ax2+bx+c(a0),y=ax2+bx+c(a0),由a,b和c的符号确定,由a,b和c的符号确定,向上,向下,在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.,在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.,根据图形填表:,B,1.抛物线y=2x2+8x-11的顶点在 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 2.不论k 取任何实数,抛物线y=a(x+k)2+k(a0)的 顶点都在 A.直线y = x上 B.直线y = - x上 C.x轴上 D.y轴上 3.若二次函数y=ax2 + 4x+a-1的最小值是2,则a的值是 4 B. -1 C. 3 D.4或-1 4.若二次函数 y=ax2 + b x + c 的图象如下,与x 轴的一个交点为(1,0),则下列 各式中不成立的是( ) A.b2-4ac0 B.abc0 C.a+b+c=0 D.a-b+c0,1,C,A,x,y,o,-1,B,( ),( ),5.若把抛物线y=x2+bx+c向左平移2个单位,再向上平 移3个单位,得抛物线y = x2 - 2x+1,则 A.b=2 B.b= - 6 , c= 6 C.b= - 8 D.b= - 8 , c= 18 6.若一次函数 y= ax + b 的图象经过第二、三、四象限, 则二次函数y = ax2 + bx - 3的大致图象是 ( ),( ),B,-3,-3,-3,-3,C,7.在同一直角坐标系中,二次函数y=ax2+bx+c与一次函数y=ax+c的大致图象可能是 ( ),C,抛物线位置与系数a,b,c的关系:,a决定抛物线的开口方向: a0 开口向上,a0 开口向下, a,b决定抛物线对称轴的位置: (对称轴是直线x = ), a,b同号 对称轴在y轴左侧; b=0 对称轴是y轴; a,b异号 对称轴在y轴右侧,2a,b,【左同右异】,知识点一:, c决定抛物线与y轴交点的位置: c0 图象与y轴交点在x轴上 c=0 图象过原点; c0 图象与y轴交点在x轴下方。,顶点坐标是( , )。,(5)二次函数有最大或最小值由a决定。,当x= 时,y有最大(最小)值 y=,b,2a,_,4a,4acb,2,(b2-4ac)的符号:,由抛物线与x轴的交点个数确定,与x轴有两个交点,b2-4ac0,与x轴有一个交点,b2-4ac=0,与x轴无交点,b2-4ac0,(6),1、抛物线y=ax2+bx+c如图所示,试确定a、b、c、的符号:,x,y,o,a0, b0, 0.,练习,2、抛物线y=ax2+bx+c如图所示,试确定a、b、c、的符号:,x,y,o,a0, b0, c=0, 0.,练习,3、抛物线y=ax2+bx+c如图所示,试确定a、b、c、的符号:,x,y,o,a0, 0.,练习,4、抛物线y=ax2+bx+c如图所示,试确定a、b、c、的符号:,x,y,o,a0, b=0, c0, =0.,练习,5、抛物线y=ax2+bx+c如图所示,试确定a、b、c、的符号:,x,y,o,a0, b=0, c=0, =0.,练习,6、抛物线y=ax2+bx+c如图所示,试确定a、b、c、的符号:,x,y,o,a0, c0, 0.,练习,7、已知:二次函数y=ax2+bx+c的图象如图所示,则点M( ,a)在 ( ),A、第一象限 B、第二象限 C、第三象限 D、第四象限,x,o,y,a0, c0,D,练习,8、已知:一次函数y=ax+c与二次函数y=ax2+bx+c,它们在同一坐标系中的大致图象是图中的( ),(A),(B),(C),(D),C,练习,9、已知:二次函数y=ax2+bx+c的图象如图所示,下列结论中:abc0;b=2a; a+b+c0;a+b-c0; a-b+c0正确的个数是 ( ) A、2个 B、3个 C、4个 D、5个,C,练习,知识点二:,抛物线y=ax2+bx+c的符号问题:,(7)a+b+c的符号:,由x=1时抛物线上的点的位置确定,点在x轴上方,点在x轴下方,点在x轴上,a+b+c0,a+b+c0,a+b+c=0,(8)a-b+c的符号:,由x=-1时抛物线上的点的位置确定,点在x轴上方,点在x轴下方,点在x轴上,a-b+c0,a-b+c0,a-b+c=0,11、已知:二次函数y=ax2+bx+c的图象如图所示,下列结论中下不正确的是 ( ) A、abc0 B、b2-4ac0 C、2a+b0 D、4a-2b+c0,D,练习,试一试:已知;二次函数y=2x2-(m+1)x+(m-1). (1)求证:不论m为何值时,函数的图像与x轴总有交点,并指出m为何值时,只有一个交点; (2)当m为何值时,函数图像过原点,并指出此时函数图像与x轴的另一个交点; (3)若函数图像的顶点在第四象限,求m的取值范围.,(2)另一个交点坐标为(1,0),(3)当m-1且m3时,抛物线的顶点在第四象限,抛物线y=ax2+bx+c的符号问题:,(1)a的符号:,由抛物线的开口方向确定,小结,4.若二次函数 y=ax2+bx+c 的图象如下,与x轴的一个交点为(1,0),则下列各式中不成立的是 ( ) A.b2-4ac0 B. 0,B,课 堂 练 习,5.若二次函数 y=ax2 + b x + c 的图象如下,与x 轴的一个交点为(1,0),则下列 各式中不成立的是( ) A.b2-4ac0 B.abc0 C.a+b+c=0 D.a-b+c0,x,y,o,1,-1,B,6.若一次函数 y=ax+b 的图象经过第二、三、四象限,则二次函数 y=ax2+bx-3 的大致图象是 ( ),7.在同一直角坐标系中,二次函数 y=ax2+bx+c 与一次函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 俱乐部人员转让协议书
- 项目销售代理协议书
- 车辆托管合同协议书
- 餐具合同解除协议书
- 餐饮分红股份协议书
- 车辆事故赔付协议书
- 高架施工补偿协议书
- Brand KPIs for second-hand apparel online shops Garimpário Brechó Online in Brazil-外文版培训课件(2025.2)
- 餐厅股份收购协议书
- 车辆买卖无责协议书
- 2024年湖南省高中学业水平合格性考试英语试卷真题(含答案详解)
- 《内科胸腔镜术》课件
- CJJ 33-2005城镇燃气输配工程施工与验收规范
- 《市场营销:网络时代的超越竞争》第4版 课件 第9章 通过构建渠道网络传递顾客价值
- 农民工工资代付款方协议模板
- 中医医疗技术手册2013普及版
- 药物合成反应-9合成设计原理
- 跨学科阅读纲要智慧树知到期末考试答案章节答案2024年山东师范大学
- 2025届湖南省数学高一下期末学业水平测试试题含解析
- 哮病-《中医内科学》教案
- 《电力建设工程起重施工技术规范》
评论
0/150
提交评论