几种常见的二次曲面.ppt_第1页
几种常见的二次曲面.ppt_第2页
几种常见的二次曲面.ppt_第3页
几种常见的二次曲面.ppt_第4页
几种常见的二次曲面.ppt_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2019年10月3日星期四,1,第四节 几种常见的二次曲面,一、问题的提出,二、柱面,四、旋转曲面,八、一般的二次曲面,九、小结与思考判断题,三、锥面,五、椭球面,六、双曲面,七、抛物面,2019年10月3日星期四,2,一、问题的提出 (Introduction),三元二次方程表示的曲面,称为二次曲面。,如球面,1)对称性:关于坐标面,坐标轴,2)存在范围,3)曲面与坐标轴、坐标面的关系,用平行于坐标面的平面去截曲面,由所得截痕来勾画曲面的大体形状及如下一些特性。,二次曲面的研究方法:,(不能用描点法,而用截痕法),2019年10月3日星期四,3,二、柱面,1、柱面的定义:,一般地,平行于定直线并沿定曲线C移动的直线L形成的轨迹叫做柱面。,动直线L叫做柱面的母线,定曲线C叫做柱面的准线。,2019年10月3日星期四,4,1)一般地,只含 x, y 而缺 z 的方程 F(x, y)=0在空间直角坐标系中表示母线平行于 z 轴的柱面,其准线为 xoy 面上的曲线,例1、 表示怎样的曲面?,也是圆柱面。,是平面,,解:,也是柱面。,母线平行于 z 轴,准线为 xoy 面上的 曲线(圆) 的圆柱面。,2019年10月3日星期四,5,2)一般地,只含 x, z 而缺 y 的方程 G(x, z)=0在空间直角坐标系中表示母线平行于 y 轴的柱面,其准线为 xoz 面上的曲线,例2、 表示怎样的曲面?,母线平行于 y 轴,准线为 xoz 面上的曲线(抛物线) 的抛物柱面。,解:,2019年10月3日星期四,6,2、练习题: 下列方程在平面、空间直角坐标系中各表示什么图形,并画出其草图。,3)一般地,只含 y, z 而缺 x 的方程 H(y, z)=0在空间直角坐标系中表示母线平行于 x 轴的柱面,其准线为 yoz 面上的曲线,2019年10月3日星期四,7,三、锥面,椭圆锥面:,特殊情形:当 a = b 时,此时为圆锥面。,曲面与平面 z = t 相交,得截痕为不同高度、不同大小的椭圆:,2019年10月3日星期四,8,1 、定义:以一条平面曲线绕该平面上的一条直线旋转一周所成的曲面叫做旋转曲面。这条直线叫做旋转曲面的轴。旋转的曲线称为母线。,四、旋转曲面,2019年10月3日星期四,9,2、 旋转曲面方程的求法 :,把该曲线绕 z 轴旋转一周,得一个以 z 轴为轴的旋转曲面。,为曲线C上的任意一点,则有,2019年10月3日星期四,10,点M到 z 轴的距离,此即为所求旋转曲面的方程。,M,2019年10月3日星期四,11,注:求旋转曲面的方程的技巧:,在曲线C 的方程 的第一个方程,中,只要将 y 改成,z 不变,便得曲,同理,曲线C绕 y 轴旋转所成的旋转曲面的方程为:,线C绕 z 轴旋转所成的旋转曲面的方程。,2019年10月3日星期四,12,2)xoy 面上的曲线C :,绕 x 轴,绕 y 轴,3)zox 面上的曲线C :,绕 x 轴,绕 z 轴,2019年10月3日星期四,13,解:,旋转面为,即,2019年10月3日星期四,14,例4 xoy 面上的椭圆,绕 x 轴转得曲面:,绕 y 轴转得曲面:,zox 面上的双曲线,绕 z 轴转得曲面:,绕 x 轴转得曲面:,旋转椭球面,旋转椭球面,旋转单叶双曲面,旋转双叶双曲面,2019年10月3日星期四,15,例5,思考:方程 表示怎样的曲面?,是怎样形成的?,或,解:是由,1、怎样形成? 2、什么曲面?,2019年10月3日星期四,16,五、椭球面,特殊情形: 当 a=b=c 时,此时为球面,2019年10月3日星期四,17, 当 a=b 时,此时为旋转曲面, 当 a=c 时,此时为旋转曲面, 当 c=b 时,此时为旋转曲面,2019年10月3日星期四,18,1、单叶双曲面,当 a=b 时为旋转单叶双曲面。,六、双曲面,2019年10月3日星期四,19,2019年10月3日星期四,20,2、双叶双曲面,或者,当 a=c 时为旋转双叶双曲面。,2019年10月3日星期四,21,1、 椭圆抛物面,a=b 时,成为旋转抛物面。,七、抛物面,2019年10月3日星期四,22,2、 双曲抛物面(马鞍面),也是双曲抛物面。,2019年10月3日星期四,23,八、一般的二次曲面,在研究一般的二次曲面时,要利用坐标变换将其方程变为标准方程。,1、坐标系的平移,坐标系的平移只改变原点的位置,不改变坐标轴的方向和单位长度。,2019年10月3日星期四,24,设 为原始坐标系, 是空间一点,将原坐标系原点 平移到 得新坐标系 。,若点P在原坐标系下的坐标为(x, y, z),在新坐标系下的坐标为(X, Y, Z),则,或,坐标系平移时 坐标变换公式,2019年10月3日星期四,25,例6 用坐标系的平移化去方程,的一次项。,解:将方程变形为:,取平移变换:,则方程变为:,为旋转椭球面,2019年10月3日星期四,26,2、坐标系的旋转,(略),2019年10月3日星期四,27,例7、指出下列方程所表示的曲面。,(1),(2),(3),(4),2019年10月3日星期四,28,(5),(6),(7),(8),2019年10月3日星期四,29,(9),(12),(10),(11),2019年10月3日

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论