



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第5讲 利用导数研究含参数不等式1设函数f(x)是奇函数f(x)(xR)的导函数,f(1)0,当x0时,xf(x)f(x)0成立的x的取值范围是()A(,1)(0,1)B(1,0)(1,)C(,1)(1,0)D(0,1)(1,)解析:选A.设yg(x)(x0),则g(x),当x0时,xf(x)f(x)0,所以 g(x)0,x1,所以 使得f(x)0成立的x的取值范围是(,1)(0,1),故选A.2已知函数f(x)x,g(x)2xa,若x1,x22,3,使得f(x1)g(x2),则实数a的取值范围是()Aa1 Ba1Ca2Da2解析:选A.由题意知f(x)ming(x)min(x2,3),因为f(x)min5,g(x)min4a,所以54a,即a1,故选A.3(2019贵州适应性考试)已知函数f(x)axex(aR),g(x).(1)求函数f(x)的单调区间;(2)x0(0,),使不等式f(x)g(x)ex成立,求a的取值范围解:(1)因为f(x)aex,xR.当a0时,f(x)0,f(x)在R上单调递减;当a0时,令f(x)0得xln a.由f(x)0得f(x)的单调递增区间为(,ln a);由f(x)0得f(x)的单调递减区间为(ln a,)(2)因为x0(0,),使不等式f(x)g(x)ex,则ax,即a.设h(x),则问题转化为a()max,由h(x),令h(x)0,则x.当x在区间(0,)内变化时,h(x),h(x)的变化情况如下表:x(0,)(,)h(x)0h(x)单调递增极大值单调递减由上表可知,当x时,函数h(x)有极大值,即最大值为.所以a.4(2017高考全国卷)设函数f(x)(1x2)ex.(1)讨论f(x)的单调性;(2)当x0时,f(x)ax1,求a的取值范围解:(1)f(x)(12xx2)ex.令f(x)0得x1,x1.当x(,1)时,f(x)0;当x(1,)时,f(x)0.所以f(x)在(,1),(1,)上单调递减,在(1,1)上单调递增(2)f(x)(1x)(1x)ex.当a1时,设函数h(x)(1x)ex,h(x)xex0),因此h(x)在0,)上单调递减,而h(0)1,故h(x)1,所以f(x)(x1)h(x)x1ax1.当0a0(x0),所以g(x)在0,)上单调递增,而g(0)0,故exx1.当0x(1x)(1x)2,(1x)(1x)2ax1x(1axx2),取x0,则x0(0,1),(1x0)(1x0)2ax010,故f(x0)ax01.当a0时,取x0,则x0(0,1),f(x0)(1x0)(1x0)21ax01.综上,a的取值范围是1,)1已知函数f(x)x(a1)ln x(aR),g(x)x2exxex.(1)当x1,e时,求f(x)的最小值;(2)当a1时,若存在x1e,e2,使得对任意的x22,0,f(x1)g(x2)成立,求a的取值范围解:(1)f(x)的定义域为(0,),f(x).当a1时,x1,e,f(x)0,f(x)为增函数,f(x)minf(1)1a.当1ae时,x1,a时,f(x)0,f(x)为减函数;xa,e时,f(x)0,f(x)为增函数;所以f(x)minf(a)a(a1)ln a1.当ae时,x1,e时,f(x)0,f(x)在1,e上为减函数f(x)minf(e)e(a1).综上,当a1时,f(x)min1a;当1ae时,f(x)mina(a1)ln a1;当ae时,f(x)mine(a1).(2)由题意知f(x)(xe,e2)的最小值小于g(x)(x2,0)的最小值由(1)知当a1时f(x)在e,e2上单调递增,f(x)minf(e)e(a1).g(x)(1ex)x.当x2,0时,g(x)0,g(x)为减函数,g(x)ming(0)1,所以e(a1),所以a的取值范围为.2(2019兰州模拟)已知函数f(x)ax2bxxln x的图象在(1,f(1)处的切线方程为3xy20.(1)求实数a,b的值;(2)设g(x)x2x,若kZ,且k(x2)f(x)g(x)对任意的x2恒成立,求k的最大值解:(1)f(x)2axb1ln x,所以2ab13且ab1,解得a1,b0.(2)由(1)与题意知k对任意的x2恒成立,设h(x)(x2),则h(x),令m(x)x42ln x(x2),则m(x)10,所以函数m(x)为(2,)上的增函数因为m(8)42ln 842ln e2440,m(10)62ln 1062ln e3660,所以函数m(x)在(8,10)上有唯一零点x0,即有x042ln x00成立,故当2xx0时,m(x)0,即h(x)0;当x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重庆梁平县2025年上半年事业单位公开遴选试题含答案分析
- 云南省元江哈尼族彝族傣族自治县2025年上半年事业单位公开遴选试题含答案分析
- 河北省邢台县2025年上半年事业单位公开遴选试题含答案分析
- 河北省鸡泽县2025年上半年事业单位公开遴选试题含答案分析
- 2025版高科技企业专业人力资源顾问合作协议范本下载
- 2025版石材外墙干挂工程招投标代理合同
- 2025版汽车后市场服务区域总代理协议
- 2025年度绿色物流托盘采购及使用规范合同
- 2025年度第三方担保公司跨境电商担保合同范本
- 2025年度房地产代理销售佣金结算协议范本
- 中级政工考试题库及答案
- (2025年标准)工作就业协议书
- 医疗公司加盟管理办法
- 2025年浙江省中考道德与法治试题答案详解讲评(课件)
- 如何用飞书高效讲解
- 广州南沙深化面向世界的粤港澳全面合作白皮书(2022.06-2025.06)
- 2025年陕西教师编制招聘考试笔试试题(含答案)
- 信息公开条例培训课件
- 2025年留疆战士考试题库及答案
- 新初一入学分班考试语文卷(含答案)
- 2025年全国《中小学教育管理》知识考试题库与答案
评论
0/150
提交评论