




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2讲 空间几何体的表面积与体积1.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖)其直观图如图,图中四边形是为体现其直观性所作的辅助线当其正视图和侧视图完全相同时,它的俯视图可能是()解析:选B.根据直观图以及图中的辅助四边形分析可知,当正视图和侧视图完全相同时,俯视图为B,故选B.2(2019湖北省七市(州)联考)如图是一个几何体的三视图,其中正视图和侧视图是两个全等的等腰三角形,底边长为4,腰长为3,则该几何体的表面积为()A6B8C10D12解析:选C.根据三视图,可以看出该几何体是一个圆锥,其底面圆的半径r为2,母线长l为3,故该圆锥的表面积Sr(rl)2(23)10,故选C.3(2019武汉市武昌调研考试)中国古代数学名著九章算术中记载了公元前344年商鞅监制的一种标准量器商鞅铜方升,其三视图如图所示(单位:寸),若取3,其体积为12.6(单位:立方寸),则图中的x为()A1.2B1.6C1.8D2.4解析:选B.该几何体是一个组合体,左边是一个底面半径为的圆柱,右边是一个长、宽、高分别为5.4x、3、1的长方体,所以组合体的体积VV圆柱V长方体x(5.4x)3112.6(其中3),解得x1.6.故选B.4(2019江西七校联考)若某空间几何体的三视图如图所示,则该几何体的表面积是()A48B48C482D482解析:选A.该几何体是正四棱柱挖去了一个半球,正四棱柱的底面是正方形(边长为2),高为5,半球的半径是1,那么该几何体的表面积为S2222451221248,故选A.5(2019河南郑州一中押题卷二)一个多面体的直观图和三视图如图所示,点M是AB上的动点,记四面体EFMC的体积为V1,多面体ADFBCE的体积为V2,则()A. B.C. D随点M位置的变化而变化解析:选B.由三视图可知多面体ADFBCE是直三棱柱,其底面是等腰直角三角形(直角边长为a),且四边形DFEC与四边形ABCD都是正方形,它们的边长均为a.因为M是AB上的动点,且易知AB平面DFEC,所以点M到平面DFEC的距离等于点B到平面DFEC的距离,为a,所以V1VEFMCVMEFCaaa,又V2aaa,故,故选B.6(2017高考江苏卷)如图,在圆柱O1O2 内有一个球O,该球与圆柱的上、下底面及母线均相切记圆柱O1O2 的体积为V1 ,球O的体积为V2 ,则的值是_解析:设球O的半径为r,则圆柱的底面半径为r、高为2r,所以.答案:7一个几何体的三视图如图所示,则该几何体的表面积为_解析:由三视图可知,该几何体是一个长方体内挖去一个圆柱体,如图所示长方体的长、宽、高分别为4,3,1,表面积为43231241238,圆柱的底面圆直径为2,母线长为1,侧面积为212,圆柱的两个底面面积和为2122.故该几何体的表面积为382238.答案:388(2019山东日照模拟)现有一半球形原料,若通过切削将该原料加工成一正方体工件,则所得工件体积与原料体积之比的最大值为_解析:设球的半径为R,正方体的棱长为a.由题意得当正方体体积最大时,a2R2,所以Ra,所以所得工件体积与原料体积之比的最大值为.答案:9.如图,在四边形ABCD中,DAB90,ADC135,AB5,CD2,AD2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积解:由已知得:CE2,DE2,CB5,S表面S圆台侧S圆台下底S圆锥侧(25)52522(604),VV圆台V圆锥(2252)4222.10已知一个几何体的三视图如图所示(1)求此几何体的表面积;(2)如果点P,Q在正视图中所示位置,P为所在线段中点,Q为顶点,求在几何体表面上,从P到Q点的最短路径的长解:(1)由三视图知该几何体是由一个圆锥与一个圆柱组成的组合体,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和S圆锥侧(2a)(a)a2,S圆柱侧(2a)(2a)4a2,S圆柱底a2,所以S表a24a2a2(5)a2.(2)沿P点与Q点所在母线剪开圆柱侧面,如图则PQa,所以从P点到Q点在侧面上的最短路径的长为a.1某三棱锥的三视图如图所示,则该三棱锥的体积为()A.B.C.D1解析:选A.由三视图可得该几何体的直观图为三棱锥A-BCD,将其放在长方体中如图所示,其中BDCD1,CDBD,三棱锥的高为1,所以三棱锥的体积为111.故选A.2(2019福建泉州质检)如图,在正方形网格纸上,实线画出的是某多面体的三视图及其部分尺寸若该多面体的顶点在同一球面上,则该球的表面积等于()A8B18C24D8解析:选C.设球的半径为R.多面体是两个正四棱锥的组合体(底面重合)两顶点之间的距离为2R,底面是边长为R的正方形,由R232R26,故该球的表面积S4R224.选C.3.在长方体ABCDA1B1C1D1中,ABBC2,过A1,C1,B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCDA1C1D1,这个几何体的体积为,则经过A1,C1,B,D四点的球的表面积为_解析:设AA1x,则VABCDA1C1D1VABCDA1B1C1D1VBA1B1C122x22x,则x4.因为A1,C1,B,D是长方体的四个顶点,所以经过A1,C1,B,D四点的球的球心为长方体ABCDA1B1C1D1的体对角线的中点,且长方体的体对角线为球的直径,所以球的半径R,所以球的表面积为24.答案:244(2017高考全国卷)已知三棱锥SABC的所有顶点都在球O的球面上,SC是球O的直径若平面SCA平面SCB,SAAC,SBBC,三棱锥SABC的体积为9,则球O的表面积为_解析:设球O的半径为R,因为SC为球O的直径,所以点O为SC的中点,连接AO,OB,因为SAAC,SBBC,所以AOSC,BOSC,因为平面SCA平面SCB,平面SCA平面SCBSC,所以AO平面SCB,所以VSABCVASBCSSBCAO(SCOB)AO,即9(2RR)R,解得R3,所以球O的表面积为S4R243236.答案:365.如图,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面)(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米);(2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素)解:(1)由题意可知矩形的高即圆柱的母线长为1.22r,所以塑料片面积Sr22r(1.22r)r22.4r4r23r22.4r3(r20.8r)所以当r0.4米时,S有最大值,约为1.51平方米(2)若灯笼底面半径为0.3米,则高为1.220.30.6(米)制作灯笼的三视图如图6.如图是一个以A1B1C1为底面的直三棱柱被一平面所截得到的几何体,截面为ABC,已知A1B1B1C12,A1B1C190,AA14,B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美容护理行业可持续发展趋势的政策支持-洞察阐释
- 中小企业信用融资服务行业跨境出海项目商业计划书
- 气候变化对生物群落影响的评估模型-洞察阐释
- 肺炎衣原体治疗效果的成本效益研究-洞察阐释
- 细胞分化与多能性调控的分子机制-洞察阐释
- 线上渠道灵活定价与线下渠道固定定价的比较-洞察阐释
- 肝结节病理学特征与临床关联-洞察阐释
- 3D打印与教育融合的研究-洞察阐释
- 基于碳纳材料的自生化循环处理系统设计与优化研究-洞察阐释
- 生物医学成像中的新型测量技术-洞察阐释
- 山东省高考志愿规划
- 篮球研究报告
- 机械通气基础知识与常见模式
- 家具借款借条模板
- 预防肥胖幼儿园
- 泪道置管的护理课件
- 造影剂脑病护理查房课件
- 电力铁塔制造培训资料
- 采购询价单模板
- 联合体内部协议
- 海南省近5年中考语文作文真题及模拟题汇编(含参考例文)
评论
0/150
提交评论