数字信号处理第二版或第一版蔡宝坤课后答案110章.pdf_第1页
数字信号处理第二版或第一版蔡宝坤课后答案110章.pdf_第2页
数字信号处理第二版或第一版蔡宝坤课后答案110章.pdf_第3页
数字信号处理第二版或第一版蔡宝坤课后答案110章.pdf_第4页
数字信号处理第二版或第一版蔡宝坤课后答案110章.pdf_第5页
已阅读5页,还剩11页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 Appendix FAnswers To Partial Problems Answers to Partial Problems in Chapter 2 2.1 01 2 1 1 2 3 12 )( 1 n,n n, n, ny n n . 2.2 1 0 1 2 1 2 )( 1 n, n, ny n . 2.3. 2 2 1 21 20 )( 2 n, n, n, nx n ; 1 2 1 11 10 )( 1 n, n, n, nx n . 2.4 (1) Periodic.200N; (2) Periodic.2N; (3) Periodic.14N; (4) Nonperiodic. 2.8 (1) For 0 nn,0)(ny; (2) For1 00 Nnnn, ) 1( )( 0 11 0 00 ,nn , ny nn nnnn ; (3) For1 0 Nnn, )( 0 0 1 ,N , ny nn NN Nnn . 2.9 0n )1 ( 1 0 1 1 )( , n, ny n . 2.10 (1) Unstable, causal, linear, time- invariant and dynamic; (2) Stable, causal, nonlinear, time- invariant and memoryless; (3) Stable, causal, linear, time- varying and memoryless; (4) Unstable, causal, linear, time- varying and dynamic; (5) Stable for bounded)(tg, causal, linear, time- varying and memoryless; (6) Stable. If0 0 n, then the system is causal. It is linear and time- invariant. If 0 0 n, the system is dynamic; (7) Stable, causal, nonlinear, time- invariant and memoryless. 0 0 0) )y( ( nnnn 0 0 0 0 2 1 n,n, . 1N, ,(y y 1N N 2 2.11) 5 2 5 4 () 1()(jny n ss . 2.12)( 4 1 8 2 1 8)(nuny nn . 2.14 (1)( 3 1 2)()(nunnh n ; (2)( 311 311 21)( 0 0 0 1 nu e/ e/ eny j n j nj . Answers to Partial Problems in Chapter 3 3.1 (1)21 )21 ( )(/|z| , /z z zX; (2)21 )21 ( )(/|z| , /z z zX; (3)2 1/2 32 2 1 3 1 5 627 5 627 6 25 )(|z|, zzzz zz zX. 3.2 (1)1 1cos2 )sin( )( 2 0 2 0 3 |z| , zz zz zX; (2)r|z| , rzrz zrz AzX cos2 )cos(cos )( 2 0 2 0 2 . 3.3 (1)43 :ROC1/|z|;43 1/2 :ROC2/|z|;21 :ROC3/|z|; (2) Three possible pole- zero plots with corresponding ROC are, respectively, shown as follows: Figure F3.3 (3) For43 /|z|,)( 4 3 13 12 )( 2 1 13 4 26 1 Re2)(nunujjnx nn . 4 4/ /; ; (2) Three possible pole- zero plots with corresponding ROC are, respectively, shown(2) Three possible pole- zero plots with corresponding ROC are, respectively, shown 2 |z| | 2 r|z| ,|z r |z| ,|z ) 2 1/2 :2 1/2| (2) Three possible pole- zero plots with corresponding ROC are, respectively, shown(2) Three possible pole- zero plots with corresponding ROC are, respectively, shown 3 For43 21/|z|/,) 1( 4 3 13 12 )( 2 1 13 4 26 1 Re2)(nunujjnx nn . For21 /|z|,) 1( 4 3 13 12 ) 1( 2 1 13 4 26 1 Re2)(nunujjnx nn 3.4 (1) 1( 4 1 7)(8)(nunnx n ; (2) 1( 11 )( 1 )(nu aa an a nx n ; (3) 1(2)( 2 1 )(nununx n . 3.6 (1) 1( 2 1 )()(nunnx n ; (2) 1(2)( 1 nunx n ; (3)( 2 3 3 6 1 2)(nunx nn ; (4)( 2 1 3 1 ) 1( 2 1 3 1 )( 2)2( nununx nn ; (5) 1( 2 1 ) 1()( 1 nunnx n . 3.7 (1)( 4 3 3 7 )( 3 4 )(nunnh n ; (2)( 4 3 13 8 3 1 13 8 )(nuny nn . 3.9 (1)()( jj eXeY; (2)()( jj eXeY; (3)()()( jjj eHeXeY; (4)deHeXeY jjj )()( 2 1 )( )( ; (5) d edX jeY j j )( )(; (6)( 2 1 )( 2 1 )( ) 2 ( 2 j /jj eXeXeY; (7)()( 2jj eXeY; (8)deXeXeY jjj )()( 2 1 )( )( . 3.10 (1)6)( 0j eX; (2)2)( j eX; 3 3 3 3 1 1 1313 8 8 n () )() ); )( )u(; ; 3 1313 8 n ) ); ; )( ( j j ( ( ( j j 4 (3)4)(deX j ; (4)28| )( 2 deX| j ; (5)316| )( 2 d d edX | j . 3.111 4 sin22)(nnyss. 3.12 (1) 2 51 | 2 51 2 51 1 )( 2 |z, zz z zz z zH; (2) The pole- zero plot of)(zHwith its ROC is shown as follows: Figure F3.10 (3)( 2 51 5 1 )( 2 51 5 1 )(nununh nn ; (4) The system is unstable, because the ROC does not include the unit circle in the z- plane. If we want to obtain a stable system, the ROC should be selected as 2 51 | 2 51 |z. The corresponding impulse response is )( 2 51 5 1 ) 1( 2 51 5 1 )(nununh nn . 3.13 (1)s.T 050 0 ,rad 40 0 ; (2) n )020() 2 80cos()(n.tn.txs; (3) The sampled sequence is) 2 80cos()(n.nxand its period5N. 3.14 (1) ROC:2 | 21|z/. The corresponding impulse response)(nhis a two- sided sequence; (2) There are 2 possible two- sided impulse responses whose ROCs are, respectively, given by2 | 21|z/and3 | 2|z; 2 2 5 5 5 (4) The system is unstable, because the ROC does not include the unit circle in the(4) The system is unstable, because the ROC does not include the unit circle in the z- plane. If we want to obtain a stable system, the ROC should be selected asz- plane. If we want to obtain a stable system, the ROC should be selected as Figure F3.10Figure F3.10 11 1 )( )( ( (4) The system is unstable, because the ROC does not include the unit circle in the(4) The system is unstable, because the ROC does not include the unit circle in the z- plane. If we want to obtain a stable system, the ROC should be selected asz- plane. If we want to obtain a stable system, the ROC should be selected as 1 | | 5 (3) No, it is not possible. 3.15 (1)1 | 1 1 )(|z, z z zH; (2) ROCy:1 | |z; (3)( 2 1 3 1 ) 1( 3 1 )(nuny n n . Answers to Partial Problems in Chapter 4 4.1 mNk,j mNk, mNk,j mNk, kX 322 22 122 10 )(,minteger any for . 4.2 (1) The periodic sequence is plotted as follows: Figure F4.2(a) (2) The principal- value sequence of the DFS)(kX is 525552 2363023610102361023635)( /j/j/j/j e.e.e.e.kX The magnitude and phase sequences are, respectively, plotted as follows: Figure F4.2(b) Figure F4.2(c) The magnitude and phase sequences are, respectively, plotted as follows:The magnitude and phase sequences are, respectively, plotted as follows: (2) The principal- value sequence of the DFS(2) The principal- value sequence of the DFSX X( The magnitude and phase sequences are, respectively, plotted as follows:The magnitude and phase sequences are, respectively, plotted as follows: 6 4.3 (1)()(kRkX N ; (2)()()(kRkNkX N ; (3)()( )2( 0 kRekX N N/jkn ; (4)( 1 1 )( 2 kR e kX N N/kj N ; (5) 2 2 )1( 0 0 2 2 )1( 0 0 00 )/2 2 sin( )2sin( )/2 2 sin( )2sin( )( / N k Nj/ N k Nj e N k /N e N k /N kX; ) 10(Nk (6)( )/2 2 sin( )2sin( )( 2 2 )1( 0 0 0 kRe N k /N kX N / N k Nj ; (7) 11 1 0 2 ) 1( )( Nk, W N k, NN kX k N . 4.4)() 2 cos()( 0 nRnk N nx N . 4.5 (1) These sequences are, respectively, plotted as follows: Figure F4.5(a) and (b) (2)()( 1 nxnx NN )()2()( 12 nRnxnx NNN Figure F4.5(c) 4.6 (1) Omitted; 4.5 (1) These sequences are, respectively, plotted as follows:4.5 (1) These sequences are, respectively, plotted as follows: 7 (2) 130 13914 85213 401 00, )()()( 21 n n,n n, n n,n n nxnxny; (3)()( 1 nxny NN 5311353113)( 2 nx N ; (4) Because the length of the circular convolution sum)(nyNis less than the length of the linear convolution sum)(ny,)(nyNis not equal to)(ny. However, if we select the length of the circular convolution sum as141 21 NNN, then )(nyNis exactly equal to)(ny. 4.7 (1) 21 1 )( /e eX j j ; (2)( 2 1 1023 1024 )( 101 nRnx n . 4.8 (1) Omitted; (2) Omitted. 4.9 (1)( 1 1 )(DFT)(kR aW a nxkX N k N N rr ;)()(nRanx N n r ; )( 1 1 )(DFT)(kR bW b nxkX N k N N ii ;)()(nRbnx N n i . (2)()(DFT)(kRnxkX Nrr ;)()()(nRnnx Nr ; )()(DFT)(kNRnxkX Nii ;)()()(nRnNnx Ni . 4.10 (1)s.Tr 10; (2)Hz 5kfh; (3)(samples) 1024N. Answers to Partial Problems in Chapter 5 5.1 (1) 5.766656s; (2) 0.03072s. 5.2 ),()(IFFT)( 21 kjXkXnx)(Re)( 1 nxnxand)(Im)( 2 nxnx. 5.3 (1) Let)()()()( 21 nRnjxnxny N , where)( 1n xand)( 2n xare the even- numberedandodd- numberedsequencescontainedinthepoint-2N sequence)(nx, respectively. Then,)()()( 2 1 )( 1 kRkYkYkX NNN and )()()( 2 1 )( 2 kRkYkYkX NNN . Thus, thepoint-2NDFT is obtained by 10 )()()( )()()( 2 2 1 2 2 1 Nk kXWkXNkX kXWkXkX k N k N ; (2) From the above result, we have ; (samples 4 (samples Answers to Partial Problems in Chapter 5Answers to Partial Problems in Chapter 5 ()() );(x x)( ( i i )( )(x x)( )( r r );)( (x)( ( i ). Answers to Partial Problems in Chapter 5Answers to Partial Problems in Chapter 5 ; ; 8 10 )()( 2 1 )( )()( 2 1 )( 2 2 1 Nk WNkXkXkX NkXkXkX k N Let)()()( 21 kjXkXkY. Then,)(IFFTRe)( 1 kYnx and)(IFFTIm)( 1 kYnx. Thus, 120 odd ), 2 1 ( even ), 2 ( )( 2 1 Nn n n x n n x nx. Answers to Partial Problems in Chapter 6 6.1 The direct- form II structure of the filter is as follows: Figure F6.1 6.2 (1) The direct- form II: Figure F6.2(a) (2) The cascade form: Figure F6.2(b) 9 (3) The parallel form: Figure F6.2(c) 6.3 The parallel structure: Figure F6.3 6.4 The direct- form I and II structures: Figure F6.4(a) Direct- form I structure Figure F6.4(b) Direct- form II structure 6.5 The linear- phase structure: 6.4 The direct- form I and II structures:6.4 The direct- form I and II structures: Figure F6.3Figure F6.3 6.4 The direct- form I and II structures:6.4 The direct- form I and II structures: 10 Figure F6.5 6.6 The linear- phase structure: Figure F6.6 6.7 (1) Two different direct forms are as follows: Figure F6.7(a) Direct- form I structure. Figure F6.7(b) Direct- form II structure. (2) Cascade of five first- order sections: Figure F6.7(c) Desired cascade structure. (3) Cascade of one first- order section and two second- order sections: 6.7 (1) Two different direct forms are as follows:6.7 (1) Two different direct forms are as follows: Figure F6.7(a) Direct- form I structure.Figure F6.7(a) Direct- form I structure. 11 Figure F6.7(d) Desired cascade structure. All of the above realizations have the same computational complexity. Every realization uses only5Nmultipliers and5Ntwo- input adders. 6.8 (1)|.|z|, z. z.z. zH40 401 060501 )( 1 21 ; (2)2(060) 1(50)() 1(40)(nx.nx.nxny.ny; (3) The canonic direct- form realization: Figure F6.8(a) The canonic realization. (4) The parallel form realization: Figure F6.8(b) The parallel realization. (5)()40125(0) 1(510)(8750)(nun.n.nh n ; (6) 1(0.4)10)()( 1 nu.nny n . 6.9 (1) The flow graph of a direct- form nonrecursive implementation of the system: Figure F6.9(a) Figure F6.8(a) The canonic realization.Figure F6.8(a) The canonic realization. 12 (2) 7766554433221 1)(zazazazazazaazzH 0 1 1 1 88 |z|, az za ; (3) The desired cascade structure: Figure F6.9(b) (4) The implementation in part (3) is recursive. However, the overall system is FIR.; (5) The implementation in part (3) requires the most storage and arithmetic. 6.10 The desired transposed structure: Figure F6.10 Answers to Partial Problems in Chapter 7 7.1. 7.2 2 21 2 210 1 )( jj jj j eaea ebebb eH, 211 b/baand 202 b/ba. 7.3 dd d aT d aT d aT d ezbTez bTezT zH 221 1 )cos(21 )cos(1 )(. 7.4 21 1 60650559511 0897010 )( z.z. z zH. 7.5 d Ts N N d ez z dz d z N AT zH 0 1 )!1( )(. 7.6 1 21 201 05010150 )( z. z.z zH. 7.7 21 21 40980136211 068401368006840 )( z.z. z.z zH. Answers to Partial Problems in Chapter 8 8.1 Omitted. 8.2 (1)/21( ),( 2 2sin 2 1 )(NnR /n /n nh N . (2) Omitted. aTaT d d 2 2 j ea ea2 2e j b b2 j e j ezez aTaT zTz d d 1 1 2 2 1 1 e e 10 0 1 5955 1 1 5595595 1 1 Answers to Partial Problems in Chapter 7Answers to Partial Problems in Chapter 7 2 , 1 ba a1 1 aTd daTd cos(os( d bTbTd cos(c s bT 08970 0 9708970 0897 13 8.3 (1) The preliminarily designed impulse response of the filter is 10 ),(350sin550sin 1 )(Nnnwn.n. n nh where66N,32.5and)( 1 2 0.46cos-0.54)(nR N n nw N ; (2) Omitted. 8.4 (1) The preliminarily designed impulse response of the filter is 10 ),(50sinsin 1 )(Nnnwn.n n nh where37N,18and)65326537Kaiser()Kaiser()(.,Nnw; (2) Omitted. 8.5 (1)The preliminarily designed impulse response of the filter is 10 ),(550sin350sinsin 1 )(Nnnwn.n.n n nhwhere 67N,33and)( 1 2 0.46cos-0.54)(nR N n nw N (2) Omitted. 8.6 (1)10 |,)(| )(| 12 NnkHkHand 10 ,)(arg)(arg 12 NnkkHkH; (2) These two filters are both linear phase. Two filter outputs have a common time delay with 3.5 samples; (3) Omitted. 8.7 (1) Omitted; (2) odd ),( even ),( )/21( /2) 1sin() 1( )( 1 Nnh Nnh Nn N nh bp bp n bs . Answers to Partial Problems in Chapter 9 9.1 (1) 3 2 )(limny n ; (2) 2 1 )0(y, 8 5 ) 1 (y, 32 21 )2(y, 128 85 )3(y, 512 341 )4(y, 2048 1365 )5(y; 3 2 )(y; 21(0.1000)0( 2 / y ,85(0.1010) 1 ( 2 / y ,85(0.1010)2( 2 / y , 85(0.1010)3( 2 /) y ,85(0.1010)4( 2 / y ,85(0.1010)5( 2 / y ;85)(/ y ; (3)0)(limny n ;0)( y . 9.2 )1 (3 2 4 2 2 a b f . 9.39b. 9.4 (1)1615(0.1111)0( 2 / y ,168(0.1000) 1 ( 2 / y ,164(0.1000)2( 2 / y , 162(0.0110)3( 2 / y ,161(0.0001)4( 2 / y ,161(0.0001)5( 2 / y ; ),( ),( ( h h( ( ( bpbp Answers to Partial Problems in Chapter 9Answers to Partial Problems in Chapter 9 ) (2) These two filters are both linear phase. Two filter outputs have a common time(2) These two filters are both linear phase. Two filter outputs have a common time )/21 2 /2 h h Answers to Partial Problems in Chapter 9Answers to Partial Problems in Chapter 9 3 3 2 ; ; 14 For4n, the filter runs into the zero- input limit cycle with a constant output 161/; (2)1615(0.1111)0( 2 / y ,1611(0.1011) 1 ( 2 / y ,168(0.1000)2( 2 / y , 166(0.0110)3( 2 / y ,165(0.0101)4( 2 / y ,164(0.0100)5( 2 / y , 163(0.0011)6( 2 / y ,162(0.0010)7( 2 / y ,162(0.0010)8( 2 / y ; For7n, the filter runs into the zero- input limit cycle with a constant output162 /. 9.5 (1) Stable; (2) Unstable. 9.6 (1) The direct form I and II realization structures of the system are shown in Figure F9.6(a) and (b), respectively; Figure p9.6 (2)2(4572

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论