外文资料翻译(同名1725).doc_第1页
外文资料翻译(同名1725).doc_第2页
外文资料翻译(同名1725).doc_第3页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

济南大学毕业论文外文资料翻译毕业论文外文资料翻译题 目 耕作方式与氮肥用量对土壤中 有机物和氮的百分含量的影响 学 院 资源与环境 专 业 环境工程 班 级 0701 学 生 张学雷 学 号 20070203070 指导教师 王惠 二一一年三月二十日- 10 -【原文】Pakistan Journal of Biological Sciences 6 (24): 2017-2019, 2003ISSN 1028-88801M.S. Akter, 2M.F. Hossain, 3U.K. Majumder 4M.S.I. Sikder and 5M.M.A.A. Chowdhury1Soil Analysis Division, Bangladesh Rural Advancement Committee (BRAC), Bangladesh2 & 4Department of Agronomy and 3Department of Statistics,Hajee Mohammad Danesh Science and Technology University, Dinajpur-5200, Bangladesh5Soil Resources Development Institute (SRDI), Dinajpur, BangladeshEffect of Tillage Practices and Nitrogen Rates on the Organic Matter (%) and N (%) Content in SoilINTRODUCTIONTillage is the oldest and most fundamental activity of human being for crop production. Different tillage operations may influence organic matter, nitrogen content and other physical properties of soil (Singh et al., 1996).The organic matter content of the soil improves the main biological and chemical capacities of the soil. Growth promoting substances and enzymes induce crop growth and yield and improve the quantity of the produce. The organic combination of nitrogen with organic matter in the soil constitutes the major store-house from which nitrogen is slowly made available to the crop. Tillage treatment significantly influenced the organic matte content of the soil upto a depth of 0-30 cm (Rahman,1977). Different application rates of nitrogen influenced on the total %N content in soil. Nitrogen plays the key rolein plant nutrient and its management practices is an extremely important aspect for crop production. Out of all nutrients the requirement of N for plant is far more than other elements (Gill et al., 1978). The soils of tropical and sub tropical zones including all agro-ecological regions of Bangladesh are seriously deficient in nitrogen. This may be due to low level of organic matter and continuous cropping with little or no nitrogen fertilizer application.Therefore organic matter and nitrogen in soil could be increased by proper tillage operation along with optimum N application.MATERIALS AND METHODSThe experiment was conducted at the Bangladesh Agricultural University Farm, Mymensingh during aman season, 1998. The soil was sandy loam having pH 6.9. The experiment was laid out in split-plot design with three replications. Three tillage treatments arranged to the mainplot and four nitrogen rates to the sub-plots. Three tillage practices, four nitrogen levels were used in this study (Table 1). The unit plot size was 4 .0x2.5m. The experimental aman rice CV. Binashail plots were fertilized P2O5 40 kg ha1 K2O 33 kg ha1 with TSP and MP during final land preparation. Urea was top dressed in three installments after 10, 25 and 40 days after transplanting. The soil samples were taken from three different depth and spots at the area to make a composit soil sample before transplanting and after harvest. The samples were air dried and ground to pass through a 2 mm (10 mseh) sieve. The ground sample were stored in clean plastic containers for chemical analysis. The soil sample were analysed for the determination of nitrogen content in the laboratory of Soil Science Depaartment, Bangladesh Agricultural University, Mymensingh. Nitrogen contents of the soil were determined by modified Kjeldahl method after digestion with cone. H2SO4 , catalyst mixture (K2SO4+ CuSO4 , 5H2O + Sc powder, 100:10:1) and H2O2 and then distillation with 10 N NaOH solution. The ammonia distilled over was absorved in H3BO3 indicator solution and titrated with 0.01 N H2SO4 (Jackson, 1973). The results were expressed in percentage. Wet oxidation method was followed to determine percentage of organic carbon as described by Black (1965) and the organic matter content was calculated by multiplying the %organic carbon with Van Bemmelen factor 1.73 (Piper, 1950).RESULTS AND DISCUSSIONOrganic matter content: Organic matter content in soil was statistically significant due to different tillage practices (Table 1). Tillage operations changed organic matter content in soil at different depth. Maximum organic matter content (0.69%) was measured under no tillage (T0)at 0-10 cm soil depth. Minimum organic matter content (0.24%) was found by 20 cm deep tillage (T2) treatment at 20-30 cm depth. Deep tillage favoured for rapid decomposition of organic matter than no tillage. Decomposition rate of organic matter was reduced by no tillage as a result organic matter content becomes high under no tillage. The result was supported by Agenbag and Maree (1989) and Boyle et al. (1989). Also reported that no tillage and to a lesser extent shallow tine tillage tended to increase organic carbon contents in the 0-10 cm soil profile. Rahman (1997) reported that tillage operation significantly influenced the organic matter content of the soil upto a depth of 0-30 cm and highest organic matter content was measured by no tillage operation. The interaction effect of tillage and nitrogen on organic matter content was not statistically significant (Table 2). The highest organic matter content (0.71%) was measured in no tillage with higher rates of nitrogen (105 kg N ha1) and the lowest (0.22%) in deep tillage with no nitrogen application Total nitrogen content in soil: Total nitrogen content in soil was not statistically significant due to tillage operation (Table 1).Total nitrogen content in soil statistically significant due to different application rates of nitrogen (Table 1) and combined effect of tillage and nitrogen (Table 2). The highest N content (0.176%) was observed by highest levels of nitrogen (105 kg N ha1) at surface soil and the lowest (0.02%) was recorded under control (N ) at 20-30 cm soil depth. This result was supported by Chowdhury (1992). He reported that total nitrogen content decreased with increasing the depth of soil. Bhuiyan (1988) reported that total nitrogen percentage of different soil series of Bangladesh ranged from 0.05-0.22%. Maximum N content (0.18%) was found by T1N3 combined treatment at 0-10 cm depth and the minimum value (0.02%) was observed under T0N0 treatment at 20-30 cm soil depth.The highest %N content (0.163) was recorded by 10 cm deep tillage (T1) at 0-10 cm soil depth and lowest %N content (0.027) was observed by no tillage (T0) at 20-30 cm depth. So, it was concluded that the organic matter content of soil statistically significant due to different tillage practices but not due to different level of nitrogen. Total nitrogen content in soil was statistically significant due to different application rates of nitrogen but not due to tillage practices.Table 1: Effect of tillage practice and nitrogen rates on the organic matter (%) and N (%) content in soil_Organic matter content (%) Nitrogen content (%)Depth of soil Depth of soil-Treatment 0-10 cm 10-20 cm 20-30 cm 0-10 cm 10-20 cm 20-30 cm_Tillage practicesT0 0.69a 0.50a 0.37a 0.162 0.092 0.027aT1 0.66b 0.48b 0.31b 0.163 0.104 0.028aT2 0.51c 0.44c 0.24c 0.162 0.103 0.031aCV (%) 0.1.62 2.11 3.26 6.13 3.16 10.90Nitrogen ratesN0 0.61b 0.46b 0.28d 0.149b 0.060b 0.022bN1 0.61b 0.46b 0.30c 0.158b 0.077c 0.028abN2 0.63a 0.48a 0.31b 0.168ab 0.120b 0.030abN3 0.63a 0.49a 0.33a 0.176a 0.141a 0.036aCV (%) 3.07 2.29 3.22 0.69 4.65 9.58_In a column, means having similar letter (s) do not differ significantly at 5%level of probability.T0 = no tillage, T1= tillage unto 10 cm and T2= tillage upto 20 cm depth.N0= no nitrogen, N1= 35 kg N ha1, N2= 70 kg N ha1and N3=105 kg N ha1Table 2: Interaction effect of tillage practices and nitrogen rates on the organic matter (%) and N (%) content in soil_Organic matter content (%) Nitrogen content (%)Depth of soil Depth of soilTreatment -combinations 0-10 cm 10-20 cm 20-30 cm 0-10 cm 10-20 cm 20-30 cm_T0N0 0.68 0.49 0.34 0.153dc 0.063cd 0.021T0N1 0.68 0.49 0.36 0.158b-c 0.670cd 0.027T0N2 0.70 0.51 0.38 0.167a-d 0.109b 0.029T0N3 0.71 0.51 0.39 0.172a-c 0.127b 0.032T1N0 0.62 0.47 0.29 0.147c 0.058d 0.021T1N1 0.64 0.47 0.30 0.157cdc 0.079c 0.027T1N2 0.69 0.49 0.32 0.169a-d 0.127b 0.029T1N3 0.67 0.50 0.34 0.181a 0.151a 0.036T2N0 0.51 0.43 0.22 0.147c 0.060d 0.024T2N1 0.50 0.43 0.23 0.158bcdc 0.081c 0.030T2N2 0.51 0.45 0.25 0.168a-d 0.125b 0.032T3N3 0.50 0.45 0.27 0.176ab 0.146a 0.039CV (%) 3.07 2.29 3.22 0.69 4.63 9.58_In a column, means having similar letter (s) do not differ significantly at 5% level of probability.REFERENCESAgenbag, G.A. and P.C.J. Maree, 1989. The effect of tillage on soil carbon, nitrogen and soil strength of simulated surface crusts in two cropping systems for wheat (Triticum aestivum). Soil and Tillage Res., 14: 53-65. Bhuiyan, N.I., 1988. Co-ordinated project on potassium report. Progress report (1987-88) BARI, Joydebpur, Gazipur, pp: 1-45.Black, C. A., 1965. Methods of soil analysis, Part I and II. Amer Soc. Inc. Pub. Madison, Wisconsin, U. S. A. pp: 770.Boyle, M., W.T.R. Frankenberger and L.A. Stolzy, 1989. The influence of organic matter on soil aggregation and water infiltration. J. Production Agril., 2: 290-299.Chowdhury, A.A., 1992. To study the physical and chemical properties of two AEZ of Bangladesh under three cropping pattens. M.Sc. Thesis, BAU, Mymensingh. Bangladesh, pp: 1-95.Gill, K. S., T. S. Sandhu and N. N. Sekhor, 1978. Green manure paddy fields for higher production. India Fmg., 28: 19.Jackson, M. L., 1973. Nitrogen determination for soils and plant tissue. Soil chemical analysis. Prenticc Hall. India Private Limited.Piper, C.S., 1950. Soil and plant analysis. Adelaide Univ. Hassel Press. Australia, pp: 368.Rahman, M.S., 1997. Different tillage methods on soil properties, root growth and yield BRRI rice 29. M. S. Thesis, BAU, Mymensingh. Bangladesh.Singh, P.K. and Y. Singh, 1996. Effect of reduced tillage on soil properties, root growth and grain yield in rice wheat-system. Indian J. Agril. Res., 30: 179-185.【译文】Pakistan Journal of Biological Sciences 6 (24): 2017-2019, 2003ISSN 1028-8880耕作方式与氮肥用量对土壤中有机物和氮的百分含量的影响1M.S. Akter, 2M.F. Hossain, 3U.K. Majumder 4M.S.I. Sikder and 5M.M.A.A. Chowdhury1Soil Analysis Division, Bangladesh Rural Advancement Committee (BRAC), Bangladesh穆罕默德达内什科技大学2&4农学系和3统计处,孟加拉国Dinajpur-5200;5土地资源发展研究所(SRDI),孟加拉国Dinajpur摘要:做实验研究耕作方式和施氮量对土壤中有机物质和总氮量的影响。耕作和氮对土壤中的有机物质和总氮含量都有明显的积极作用。有机物质的最高含量(0.69%)是在表面层没有进行耕作处理(T0)时测得的,最高的总氮含量(0.163%)是在表面层进行10厘米深的耕作处理(T1)时记录的。在表面层中引入105公斤的N ha1时可以发现最高的有机物质含量(0.67%)和总氮含量(0.176%)。耕作和氮对有机物质含量的相互影响作用是不符合统计学意义的。最高的有机物质含量(0.71%)是在没有进行耕作处理和较高的氮含量(105公斤N ha1)时测得的。最大的氮含量是在0厘米到10厘米深进行T1N1处理后发现的。关键词:耕作,氮用量,有机物质,氮含量,土壤简介耕作是人类进行农作物生产的最古老和最基本的活动。不同的耕作方式可能会影响土壤中的有机物质、氮的含量和其他的物理性质(Singh等, 1996年)。土壤中有机物质的含量会改善土壤的生物和化学性能。促进生长的物质和酶可以促进作物的生长和提高改善产物的数量。氮和土壤中的有机物质结合成的有机组合构成了一个大仓库,氮就是在这个大仓库中慢慢提供给作物的。耕作处理可以对深度达0厘米到30厘米的土壤中的有机物质含量有明显的影响作用(拉赫曼,1977年)。不同的氮肥引用率会影响土壤中总的百分氮含量。氮对作物的营养起着关键的作用,并且对氮的管理方法是作物产量的极为重要的一方面。在所有的营养中,植物对氮的需求是远远超过其他元素的(吉尔等人, 1978年)。热带和亚热带,包括孟加拉国所有的农业生态区地带的土壤中的氮是严重不足的。这可能是由于低水平的有机物质和持续的耕作时很少或根本没有施用氮肥的结果。因此,土壤中的有机物质和氮素可以通过正确的耕作方式和最佳的氮素引入来增加的。材料与方法实验是在1988年的阿曼季节在迈门辛孟加拉国农业大学的农场进行的。土壤是沙质壤土,pH值为6.9。实验是在裂区进行了三次重复制定出来的。三种耕作处理对应着主图区,四种氮素率对应着次图区。三种耕作方式和四种氮素水平被应用在这个研究中(表1)。每单位样区的面积是4 .0mx2.5m。在最后土地整理阶段试验的阿曼变异系数是施用了P2O5 40 公斤ha1 K2O 33 公斤ha1与TSP和MP。在移植后的10天、25天、40天分三期在顶部附着尿素。在移植前和收获后取一些综合的土壤样本,土壤样本是在这个地区的三个不同的深度和地点取的。把土壤进行空气风干,使土壤穿过一个2毫米(10mseh)的筛子。地面采样被保存在干净的塑料容器中用来进行化学分析。分析土壤样本来确定氮含量的实验是在迈门辛的孟加拉国农业大学土壤科学系的实验室进行的。土壤中氮的含量是根据用硫酸、催化剂混合物(硫酸钾+5水硫酸铜+钪粉,100:10:1)和双氧水进行消化处理改良的凯氏定氮法来确定的,然后用10 N的氢氧化钠溶液进行蒸馏处理。氨蒸馏时出来的氨被H2BO3指示剂溶液吸收,用0.01 N的硫酸滴定(杰克逊, 1973年)。结果用百分数来表示。根据布莱克(1965年)所描述的湿式氧化法可以来测定有机碳的含量,有机物质的含量是通过有机碳含量乘以Van Bemmelen系数1.73来计算的 (Piper,1950年)。结果与讨论有机物质的含量:土壤中的有机物质含量会由于不同的耕作方式而有明显的不同(表1)。耕作会改变不同深度的土壤中有机物质的含量。最大的有机物质含量(0.69%)是在没有耕作(T0)时的0厘米到10厘米深的土壤测得的。最小的有机物质含量(0.24%)是在进行20厘米深的耕作(T1)处理,在20厘米到30厘米的深度发现的。深度耕作比不耕作更有利于有机物质的迅速分解。有机物质的分解率由于不进行耕作而被降低,结果有机物质的含量在不进行耕作时变的高了。这种结果被Agenbag和 Maree (1989年) 还有Boyle等 (1989年)所支持。另据报道,不进行耕作或在较小程度上进行浅耕都有增加0厘米到10厘米深的土壤层中有机碳含量的趋势。拉赫曼(1997年)报告称,耕作作业可以明显的影响达0厘米到30厘米深的土壤中的有机物质的含量,并且最高的有机物质含量是在没有进行耕作时测得的。耕作和氮素对土壤中的有机物质含量的联合作用并不符合统计学意义的(表2)。最高的有机物质含量(0.71%)是在没有进行耕作和较高的氮素引入率(105公斤 N ha1)时测得的,最低的有机物质含量(0.21%)是在深耕和没有引入氮素时测得的。土壤中总氮含量:耕作方式与土壤中总氮含量是不具有统计学意义的(表1)。而不同的氮素引用率的与土壤中的总氮含量具有统计学意义(表1),并且耕作和氮素的引入的联合作用与土壤中总氮的含量也具有统计学意义(表2)。最高的氮素含量(0.176%)是在土壤表面最高程度的氮素引入(105公斤 N ha1)时发现的,最低的氮素含量(0.02%)是在土壤深达20厘米到30厘米并且控制氮素的情况下记录的。Chowdhury (1992年)支持这种结果。他声称,总氮的含量会随着土壤深度的增加而减少。Bhuiyan (1988年)报道称孟加拉国不同土壤体系的总氮的百分含量介于0.05%到0.22%之间。最大的氮素含量(0.18%)是在0厘米到10厘米的土壤深处用T1N3进行综合处理时发现的,最小的氮素含量(0.02%)是在20厘米到30厘米的土壤深处用T0N0处理后发现的。 最高的百分氮含量(0.163)是在进行10厘米深的耕作处理(T1)后在0厘米到10厘米的土壤深处测出记录的,最低的百分氮含量(0.027)是在没有进行耕作时在20厘米到30厘米的土壤深处发现的。 因此,可以总结为:土壤中有机物质的含量与不同的耕作方式符合统计学意义,但是有机物质的含量与不同的氮素水平却不符合统计学意义。土壤中总氮的含量与氮素的引入率符合统计学意义,但是与耕作方式却不符合统计学意义。表1:耕作方式与氮素率分别对土壤中氮素(%)与有机物质含量(%)的影响_有机物质含量 (%) 氮的含量 (%)土壤深度 土壤深度-处理 0-10 cm 10-20 cm 20-30 cm 0-10 cm 10-20 cm 20-30 cm_耕作方式T0 0.69a 0.50a 0.37a 0.162 0.092 0.027aT1 0.66b 0.48b 0.31b 0.163 0.104 0.028aT2 0.51c 0.44c 0.24c 0.162 0.103 0.031aCV (%) 0.1.62 2.11 3.26 6.13 3.16 10.90氮率N0 0.61b 0.46b 0.28d 0.149b 0.060b 0.022bN1 0.61b 0.46b 0.30c 0.158b 0.077c 0.028abN2 0.63a 0.48a 0.31b 0.168ab 0.120b 0.030abN3 0.63a 0.49a 0.33a 0.176a 0.141a 0.036aCV (%) 3.07 2.29 3.22 0.69 4.65 9.58_在一列中,具有相同函的方法在百分之五的概率水平内不会有显著的差异。T0 = 不进行耕作, T1= 耕作到10厘米的深度 , T2= 耕作到20厘米的深度N0= 没有施肥, N1= 35 公斤的 N ha1 , N2= 70 公斤的 N ha1和N3=105 公斤的 N ha1表2:耕作方式与氮素率的相互作用对土壤中氮素(%)与有机物质含量(%)的影响_有机物质含量 (%) 氮的含量 (%)土壤深度 土壤深度处理 -联合作用 0-10 cm 10-20 cm 20-30 cm 0-10 cm 10-20 cm 20-30 cm_T0N0 0.68 0.49 0.34 0.153dc 0.063cd 0.021T0N1 0.68 0.49 0.36 0.158b-c 0.670cd 0.027T0N2 0.70 0.51 0.38 0.167a-d 0.109b 0.029T0N3 0.71 0.51 0.39 0.172a-c 0.127b 0.032T1N0 0.62 0.47 0.29 0.147c 0.058d 0.021T1N1 0.64 0.47 0.30 0.157cdc 0.079c 0.027T1N2 0.69 0.49 0.32 0.169a-d 0.127b 0.029T1N3 0.67 0.50 0.34 0.181a 0.151a 0.036T2N0 0.51 0.43 0.22 0.147c 0.060d 0.024T2N1 0.50 0.43 0.23 0.158bcdc 0.081c 0.030T2N2 0.51 0.45 0.25 0.168a-d 0.125b 0.032T3N3 0.50 0.45 0.27 0.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论