多波形函数信号发生器.docx_第1页
多波形函数信号发生器.docx_第2页
多波形函数信号发生器.docx_第3页
免费预览已结束,剩余9页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

电 子 课 程 设 计设计题目:多波型信号发生器系 部:信息工程学院专 业:电子信息工程班 级:1301班学 号:133001020108姓 名:高旭指导老师:陈亮目录 一 设计要求3二 总体概要设计3三 各单元模块设计与分析43.1 正弦波发生器4 3.1.1 RC桥式振荡器43.2 方波转化电路6 3.2.1 555定时片63.2.2 由555芯片构成的施密特触发器73.2.3 方波幅度调节电路83.3 三角波转化电路8 3.3.1 RC无源积分器8 3.3.2 自举电路反相放大器9四 总电路图10五 元器件清单10六 总结与体会11七 参考文献和辅助软件11一 设计要求:具体要求:用中小规模集成芯片设计制作产生方波、三角波和正弦波等多种波形信号输出的波形发生器,具体要求如下:(1)输出波形工作频率范围为0.02HZ20KHZ,且连续可调;(2)正弦波幅值10V,失真度小于1.5%;(3)方波幅值10V;(4)三角波峰-峰值20V,各种输出波形幅值均连续可调。二 总体概要设计:总体设计思路:函数发生器一般是指能自动产生正弦波,三角波,方波及锯齿波,阶梯波等电压波形的电路或仪器。根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器,555芯片共同构成正弦波方波三角波函数发生器的设计方法。产生正弦波,方波,三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变化为方波,再由积分电路将方波转化为三角波;也可以首先产生三角波方波,再将三角波变成正弦波或将方波变成正弦波等等。本课题就是采用第一种方法:先产生正弦波再转化为方波最后变为三角波的电路设计方法。本课题的正弦波发生电路用的是RC桥式振荡器,调节其中的R,C的值可实现率频的调节。由正弦波转化为方波的电路是用555芯片构成的施密特触发器,在触发器的输出端接有两极运放,第一极构成的是同相跟随器,主要作用是提高输入阻抗,减少前极对后极的影响;第二极构成的是反相比例放大器,用于放大方波的幅度并调节方波的幅度。由方波转化为三角波则用到的是RC无源滤波器,在输出端接有自举电路放相放大器,主要作用是提高输出阻抗以减小前极对后级的影响,然后三角波经过反相放大器放大并实现幅度可调。最终实现多波形信号发生器电路的设计。三 各单元模块的设计与分析3.1 正弦波发生器 3.3.1 RC桥式振荡器RC桥式振荡器电路原理图:RC桥式正弦振荡电路如图所示。其中R1、C1和R2、C2为串、并联选频网络,接于运算放大器的输出与同相输入端之间,构成正反馈,以产生正弦自激振荡。R3、RW及R4组成负反馈网络,调节RW可改变负反馈的反馈系数,从而调节放大电路的电压增益,使电压增益满足振荡的幅度条件。为了使振荡幅度稳定,通常在放大电路的负反馈回路里加入非线性元件来自动调整负反馈放大电路的增益,从而维持输出电压幅度的稳定。图中的两个二极管D1,D2便是稳幅元件。当输出电压的幅度较小时,电阻R4两端的电压低,二极管D1、D2截止,负反馈系数由R3、RW及R4决定;当输出电压的幅度增加到一定程度时,二极管D1、D2在正负半周轮流工作,其动态电阻与R4并联,使负反馈系数加大,电压增益下降。输出电压的幅度越大,二极管的动态电阻越小,电压增益也越小,输出电压的幅度保持基本稳定。为维持振荡输出,必须让:1+RfR3=3为保证电路起振:1+RfR3=3 Rf=RW+(R4/rD) (其中rD是二极管的导通动态电阻)当R1=R2=R, C1=C2=C时:电路的振荡率频为: f = 1 2 RC起振的振幅条件为: RfR3 =2调整电阻RW (即改变了反馈R f ),使电路起振,且波形失真最小。如不能起振,则说明负反馈太强,应适当加大R f ,如波形失真严重,则应适当减少R f。改变选频网络的参数C 或R,即可调节振荡频率。一般采用改变电容C 作频率量程切换(粗调),而调节R作量程内的频率细调。 本课题正是用的RC桥式振荡器用于产生正弦波的,其在Multilism10中建立的电路原理图如下图所示:3.2 方波转化电路3.2.1 555定时器芯片555定时器芯片的内部电路原理图:555定时器功能主要有两个比较器决定,两个比较器的输出电压控制RS触发器和放电管的状态。在电源与地之间加上电压,当5脚悬空时,则电压比较器C1的同相输入端电压为 23VCC, C2的反相输入端为13VCC, 若触发输入端TR的电压小于13VCC,则比较器C2的输出端为0,可使RS触发器置1,使输出端OUT=1。如果阈值输入端的TH的电压大于23VCC, 同时TR端的电压大于13VCC,则C1的输出为0,C2的输出为1,可将RS触发器置0,使输出为0电平。它的各个引脚功能如下:1,外接电源负端VSS或接地,一般接地;2,低触发端;3,输出端Vo; 4,直接清零端。当接入低电平时时基电路不工作,此时不论TH处于何电平,时基电路输出为0,该端不用时接高电平;5,VC为控制电压端。若此端外接电压,则可改变内部两个比较器的基准电压,当该端不用时应串入一个0.01uF的电容接地,以防止引入干扰;6,TH高触发端;7,放电端,该端与放电管集电极相连,用作定时器时电容的放电;8,外接电源VCC。双极型的时基电路VCC的范围为4.5-16V,CMOS型的时基电路VCC的取值范围为3-18V,一般为5V。3.2.2 由555定时器芯片构成的施密特触发器本课题由正弦波变换为方波使用到的就是由555构成的施密特触发器,其在Multilism10仿真软件上建立的原理图如下图所示:3.2.3 方波幅度调节电路 上一极由555构成的施密特触发器将正弦波转化为方波后,接着有两极放大器,第一极由uA741构成的同相跟随器,主要功能提高输入阻抗,第二极放大器同样是由uA741构成的反相比例放大器,其主要功能是对方波的由度放大并实现调节。该部分电路实现的电路原理图如下图所示:3.3 三角波转化电路 3.3.1 RC无源积分器 RC无源积分器的原理:由q=uc可得:ic(t)=CdUc(t)dt,进一步可得到:uc(t)=1C0ti(t)dt, 而i=ui/R,代入后得:uc(t)=1RC0tUi(t)dt,3.3.2 自举电路反相放大器 当RC无源积分器将方波转化为三角波后,下一极接入自举电路反相放大器,其目的是提高输入阻抗,在Multilism10中搭建电路如下图: 自举电路反相放大器提高输入阻抗的原理:由图知:Au2=-R2/R1;Au1=-2R1/R2;U02=Au1*Au2*Ui=2Ui输入电流Ii=I1-I=uI/R1-(Uo2-Ui)/R;而输入电阻Ri=Ui/Ii=Ui/(I1-I);整理后得:Ri=R1*R/(R-R1);由此可知当R=R1时,该反相放大器的输入电阻无穷大。四 总电路图此电路图采用模块化使电路设计思路更加清晰有条理,各个模块的电路原理图及分析已在上一章节有详细介绍,这里就不在赘述。仿真效果如下图:五 元器件清单本课题用到的元器件有:555定时器芯片*1,uA741运算放大器*5,1N4148二极管*2,双踪示波器,电阻:1k*8,3k*1,10k*5,15k*2,28k*1,33k*2,47k*1,50k*2,66k*1;电容:10n*3,100n*1;电源:DC12V,DC5V;六 总结与体会 本次实验是本人第一次亲身体会自已动手查资料,设计电路,仿真等过程,个人感觉收获还是很大的。每当电路要成功时,当时的心情是那么的激动,但是前几次都没有成功,在我的不断努力,不断探索,不断查资料下,终于将电路设计成功,在成功之时心情真是好极了,对今后的学习也更加有信心了! 当我刚拿到这个课程设计题目时感觉很茫然,不知道从何入手,只有一张设计要求,没有工具,没有资料,没有材料,如何能完成设计要求呢!原来学校电脑中装有电路仿真软件Multilism10,无需将电路实物做出来,用Multilism10对电路进行仿真就行了,这个软件方便,安全,还便于对电路进行修改! 在实验过程中,我遇到了很多问题,比如:波形失真,甚至不出波形一样的问题。在老师和同学的帮助下,把问题一一解决,那种心情别提有多高兴啊!实验中暴露出我们在理论学习中所存

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论