已阅读5页,还剩120页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一讲 力、物体的平衡1.1常见的力111、 力的概念和量度 惯性定律指出,一个物体,如果没有受到其他物体作用,它就保持其相对于惯性参照系的速度不变,也就是说,如果物体相对于惯性参照系的速度有所改变,必是由于受到其他物体对它的作用,在力学中将这种作用称为力。凡是讲到一个力的时候,应当说清楚讲到的是哪一物体施了哪一个物体的力。一个物体,受到了另一物体施于它的力,则它相对于惯性参照系的速度就要变化,或者说,它获得相对于惯性参照系的加速度,很自然以它作用于一定的物体所引起的加速度作为力的大小的量度。实际进行力的量度的时候,用弹簧秤来测量。重力由于地球的吸引而使物体受到的力,方向竖直向下,在地面附近,可近似认为重力不变(重力实际是地球对物体引力的一个分力,随纬度和距地面的高度而变化)l图1-1-1弹力物体发生弹性变形后,其内部原子相对位置改变,而对外部产生的宏观反作用力。反映固体材料弹性性质的胡克定律,建立了胁强(应力)与胁变(应变)之间的正比例关系,如图所示 式中E为杨氏弹性模量,它表示将弹性杆拉长一倍时,横截面上所需的应力。弹力的大小取决于变形的程度,弹簧的弹力,遵循胡克定律,在弹性限度内,弹簧弹力的大小与形变量(伸长或压缩量)成正比。F=-kx式中x表示形变量;负号表示弹力的方向与形变的方向相反;k为劲度系数,由弹簧的材料,接触反力和几何尺寸决定。GTTTT图1-1-2接触反力 限制物体某些位移或运动的周围其它物体在接触处对物体的反作用力(以下简称反力)。这种反力实质上是一种弹性力,常见如下几类:1、柔索类(图1-1-2)如绳索、皮带、链条等,其张力一般不计柔索的弹性,认为是不可伸长的。滑轮组中,若不计摩擦与滑轮质量,同一根绳内的张力处处相等。 ABCAAAAAA图1-1-32、光滑面(图1-1-3)接触处的切平面方位不受力,其法向支承力3、光滑铰链物体局部接触处仍属于光滑面,但由 于接触位置难于事先确定,这类接触反力的方位,除了某些情况能由平衡条件定出外,一般按坐标分量形式设定。A图1-1-4ABC图1-1-5图1-1-6(1)圆柱形铰链(图1-1-4,图1-1-5,图1-1-6)由两个圆孔和一个圆柱销组成。在孔的轴线方向不承受作用力,其分力 图中AC杆受力如图,支座B处为可动铰,水平方向不受约束,反力如图。A图1-1-7 图1-1-8(2)球形铰链(图1-1-7,图1-1-8)由一个球碗和一个球头组成,其反力可分解为4、固定端(图1-1-9,图1-1-10) 如插入墙内的杆端,它除限制杆 A图1-1-9A图1-1-10端移动外,还限制转动,需增添一个反力偶。摩擦力 物体与物体接触时,在接触面上有一种阻止它们相对滑动的作用力称为摩擦力。不仅固体与固体的接触面上有摩擦,固体与液体的接触面或固体与气体的接触面上也有摩擦,我们主要讨论固体与固体间的摩擦。112、摩擦分为静摩擦和滑动摩擦当两个相互接触的物体之间存在相对滑动的趋势(就是说:假如它们之间的接触是“光滑的”,将发生相对滑动)时,产生的摩擦力为静摩擦力,其方向与接触面上相对运动趋势的指向相反,大小视具体情况而定,由平衡条件或从动力学的运动方程解算出来,最大静摩擦力为式中称为静摩擦因数,它取决于接触面的材料与接触面的状况等,N为两物体间的正压力。当两个相互接触的物体之间有相对滑动时,产生的摩擦力为滑动摩擦力。滑动摩擦力的方向与相对运动的方向相反,其大小与两物体间的正压力成正比。为滑动摩擦因数,取决于接触面的材料与接触面的表面状况,在通常的相对速度范围内,可看作常量,在通常情况下,可不加区别,两物体维持相对静止的动力学条件为静摩擦力的绝对值满足在接触物的材料和表面粗糙程度相同的条件下,静摩擦因数略大于动摩擦因数。摩擦角 令静摩擦因数等于某一角的正切值,即,这个角就称为摩擦角。在临界摩擦(将要发生滑动状态下),。支承面作用于物体的沿法线方向的弹力N与最大静摩擦力的合力F(简称全反力)与接触面法线方向的夹角等于摩擦角,如图1-1-11所示(图中未画其他力)。在一般情况下,静摩擦力未达到最大值,即NFfm图1-1-11AF图1-1-12v图1-1-13因此接触面反作用于物体的全反力的作用线与面法线的夹角,不会大于摩擦角,即。物体不会滑动。由此可知,运用摩擦角可判断物体是否产生滑动的条件。如图1-1-12放在平面上的物体A,用力F去推它,设摩擦角为,推力F与法线夹角为,当时,无论F多大,也不可能推动物块A,只有时,才可能推动A。摩擦力作用的时间 因为只有当两个物体之间有相对运动或相对运动趋势时,才有摩擦力,所以要注意摩擦力作用的时间。如一个小球竖直落下与一块在水平方向上运动的木块碰撞后,向斜上方弹出,假设碰撞时间为,但可能小球不需要时间,在水平方向上便已具有了与木块相同的速度,则在剩下的时间内小球和木块尽管还是接触的,但互相已没有摩擦力。 如图1-1-14,小木块和水平地面之间的动摩擦因数为,用一个与水平方向成多大角度的力F拉着木块匀速直线运动最省力?FNGFG图1-1-14将摩擦力和地面对木块的弹力N合成一个力,摩擦角为,这样木块受三个力:重力G,桌面对木块的作用力和拉力F,如图1-1-14,作出力的三角形,很容易看出当F垂直于最小,即有F与水平方向成时最小。例1、 如图1-1-15所示皮带速度为,物A在皮带上以速度垂直朝皮带边运动,试求物A所受摩擦力的方向。 AA图1-1-15解:物A相对地运动速度为,滑动摩擦力f与方向相反如图所示。例2、物体所受全反力R与法向的夹角的情形可能出现吗?解:不可能。因为若有则即。,这是不可能的。然而在要判断一个受摩擦物体是否静止时,可事先假定它静止,由平衡求出,有如下三种情形:图1-1-16 1.2力的合成与分解121、力的合成遵循平行四边形法则即力的合力即此二力构成的平行四边形的对角线所表示的力F,如图1-2-1(a)根据此法则可衍化出三角形法则。即:将通过平移使其首尾相接,则由起点指向末端的力F即的合力。(如图F1F2FF1F2F(a) (b) 图1-2-11-2-1(b))如果有多个共点力求合力,可在三角形法则的基础上,演化为多边形法则。如图1-2-2所示,a图为有四个力共点O,b图表示四个力矢首尾相接,从力的作用点O连接力力矢末端的有向线段就表示它们的合力。而(c)图表示五个共点力组成的多边形是闭合的,即力矢的起步与力矢的终点重合,这表示它们的合力为零。力的分解是力的合成的逆运算,也遵循力的平行四边形法则,一般而言,一个力分解为两力有多解答,为得确定解还有附加条件,通常有以下三种情况:已知合力和它两分力方向,求这两分力大小。这有确定的一组解答。F1F2F3F4F1F2F3F4FF1F2F3F4F5(a) (b) (c) 图1-2-2已知合力和它的一个分力,求另一个分力。这也有确定的确答。已知合力和其中一个分力大小及另一个分力方向,求第一个合力方向和第二分力大小,其解答可能有三种情况:一解、两解和无解。122、平面共点力系合成的解析法如图1-2-3,将平面共点力及其合力构成力的多边形abcde,并在该平面取直角坐标系Oxy,作出各力在两坐标轴上的投影,从图上可见:xyabcdeORxF1yF4yF3yF2yF1xF2xF3xF4xFyF1F2F3F4RyxyORxR图1-2-3(a)(b)上式说明,合力在任意一轴上的投影,等于各分力在同一轴上投影的代数和,这也称为合力投影定理。知道了合力R的两个投影和,就不难求出合力的大小与方向了。合力R的大小为:合力的方向可用合力R与x轴所夹的角的正切值来确定:123、平行力的合成与分解作用在一个物体上的几个力的作用线平行,且不作用于同一点,称为平行力系。如图1-2-4如果力的方向又相同,则称为同向平行力。ROABF2F1ABOF1F2R(a) (b) 图1-2-4两个同向平行力的合力(R)的大小等于两分力大小之和,合力作用线与分力平行,合力方向与两分力方向相同,合力作用点在两分力作用点的连线上,合力作用点到分力作用点的距离与分力的大小成反比,如图1-2-4(a),有:两个反向平行力的合力(R)的大小等于两分力大小之差,合力作用线仍与合力平行,合力方向与较大的分力方向相同,合力的作用点在两分力作用点连线的延长线上,在较大力的外侧,它到两分力作用点的距离与两分力大小成反比,如图1-2-4(b),有:YjkizYXZX图1-2-5124、空间中力的投影与分解力在某轴上的投影定义为力的大小乘以力与该轴正向间夹角的余弦,如图1-2-5中的力在ox、oy、oz轴上的投影X、Y、Z分别定义为这就是直接投影法所得结果,也可如图1-2-6所示采用二次投影法。这时ZXYFFxyO图1-2-6式中为在oxy平面上的投影矢量,而力沿直角坐标轴的分解式1.3共点力作用下物体的平衡131、共点力作用下物体的平衡条件几个力如果都作用在物体的同一点,或者它们的作用线相交于同一点,这几个力叫作共点力。当物体可视为质点时,作用在其上的力都可视为共点力。当物体不能视为质点时,作用于其上的力是否可视为共点力要看具体情况而定。物体的平衡包括静平衡与动平衡,具体是指物体处于静止、匀速直线运动和匀速转动这三种平衡状态。共点力作用下物体的平衡条件是;物体所受到的力的合力为零。或其分量式:F1F2F3图1-3-1如果在三个或三个以上的共点力作用下物体处于平衡,用力的图示表示,则这些力必组成首尾相接的闭合力矢三角形或多边形;力系中的任一个力必与其余所有力的合力平衡;如果物体只在两个力作用下平衡,则此二力必大小相等、方向相反、且在同一条直线上,我们常称为一对平衡力;如果物体在三个力作用下平衡,则此三力一定共点、一定在同一个平面内,如图1-3-1所示,且满足下式(拉密定理):132、推论物体在n(n3)个外力作用下处于平衡状态,若其中有n-1个力为共点力,即它们的作用线交于O点,则最后一个外力的作用线也必过O点,整个外力组必为共点力。这是因为n-1个外力构成的力组为共点(O点)力,这n-1个的合力必过O点,最后一个外力与这n-1个外力的合力平衡,其作用线必过O点。特例,物体在作用线共面的三个非平行力作用下处于平衡状态时,这三个力的作用线必相交于一点且一定共面。1.4 固定转动轴物体的平衡141、力矩FOd图1-4-1力的三要素是大小、方向和作用点。由作用点和力的方向所确定的射线称为力的作用线。力作用于物体,常能使物体发生转动,这时外力的作用效果不仅取决于外力的大小和方向,而且取决于外力作用线与轴的距离力臂(d)。力与力臂的乘积称为力矩,记为M,则M=Fd,如图1-4-1,O为垂直于纸面的固定轴,力F在纸面内。力矩是改变物体转动状态的原因。力的作用线与轴平行时,此力对物体绕该轴转动没有作用。若力F不在与轴垂直的平面内,可先将力分解为垂直于轴的分量F和平行于轴的分量F,F对转动不起作用,这时力F的力矩为M=Fd。通常规定 绕逆时方向转动的力矩为正。当物体受到多个力作用时,物体所受的总力矩等于各个力产生力矩的代数和。142、力偶和力偶矩F1F2O图1-4-2一对大小相等、方向相反但不共线的力称为力偶。如图1-4-2中即为力偶,力偶不能合成为一个力,是一个基本力学量。对于与力偶所在平面垂直的任一轴,这一对力的力矩的代数和称为力偶矩,注意到,不难得到,M=Fd,式中d为两力间的距离。力偶矩与所相对的轴无关。143、有固定转动轴物体的平衡有固定转轴的物体,若处于平衡状态,作用于物体上各力的力矩的代数和为零。1.5 一般物体的平衡力对物体的作用可以改变物体的运动状态,物体各部位所受力的合力对物体的平动有影响,合力矩对物体的转动有影响。如果两种影响都没有,就称物体处于平衡状态。因此,一般物体处于平衡时,要求物体所受合外力为零和合力矩为零同时满足,一般物体的平衡条件写成分量式为分别为对x轴、y轴、z轴的力矩。由空间一般力系的平衡方程,去掉由力系的几何性质能自动满足的平衡方程,容易导出各种特殊力系的独立平衡方程。如平面力系(设在平面内),则自动满足,则独立的平衡方程为:这一方程中的转轴可根据需要任意选取,一般原则是使尽量多的力的力臂为零。平面汇交力系与平面平行力系的独立方程均为二个,空间汇交力系和空间平行力系的独立平衡方程均为三个。1.6 平衡的稳定性161、重心物体的重心即重力的作用点。在重力加速度为常矢量的区域,物体的重心是惟一的(我们讨论的都是这种情形),重心也就是物体各部分所受重力的合力的作用点,由于重力与质量成正比,重力合力的作用点即为质心,即重心与质心重合。AOCPBXG1G2G3图1-6-1R求重心,也就是求一组平行力的合力作用点。相距L,质量分别为的两个质点构成的质点组,其重心在两质点的连线上,且与相距分别为: 均匀规则形状的物体,其重心在它的几何中心,求一般物体的重心,常用的方法是将物体分割成若干个重心容易确定的部分后,再用求同向平行力合力的方法找出其重心。物体重心(或质心)位置的求法我们可以利用力矩和为零的平衡条件来求物体的重心位置。如图1-6-1由重量分别为的两均匀圆球和重量为的均匀杆连成的系统,设立如图坐标系,原点取在A球最左侧点,两球与杆的重心的坐标分别为,系统重心在P点,我们现在求其坐标x。设想在P处给一支持力R,令达到平衡时有:这样就得出了如图所示的系统的重心坐标。若有多个物体组成的系统,我们不难证明其重心位置为:一般来说,物体的质心位置与重心位置重合,由上面公式很易得到质心位置公式:P图1-6-2如图1-6-2,有5个外形完全一样的均匀金属棒首尾相接焊在一起,从左至右其密度分别为、1、2、3、4,设每根棒长均为,求其质心位置,若为n段,密度仍如上递增,质心位置又在什么地方?解:设整个棒重心离最左端距离为x,则由求质心公式有若为n段,按上式递推得:将坐标原点移到第一段棒的重心上,则上式化为:ABC图1-6-3例、如图1-6-3所示,A、B原为两个相同的均质实心球,半径为R,重量为G,A、B球分别挖去半径为的小球,均质杆重量为,长度,试求系统的重心位置。解:将挖去部份的重力,用等值、反向的力取代,图示系统可简化为图1-1-31所示平行力系;其中。设重心位置为O,则合力且即OC=0.53R162、物体平衡的种类物体的平衡分为三类:稳定平衡 处于平衡状态的物体,当受到外界的扰动而偏离平衡位置时,如果外力或外力矩促使物体回到原平衡位置,这样的平衡叫稳定平衡,处于稳定平衡的物体,偏离平衡位置时,重心一般是升高的。不稳定平衡 处于平衡状态的物体,当受到外界的扰动而偏离平衡位置时,如果外力或外力矩促使物体偏离原来的平衡位置,这样的平衡叫不稳定平衡,处于不稳定平衡的物体,偏离平衡位置时,重心一般是降低的。随遇平衡 处于平衡状态的物体,当受到外界扰动而偏离平衡位置时,物体受到的合外力或合力矩没有变化,这样的平衡叫随遇平衡,处于随遇平衡的物体,偏离平衡位置后,重心高度不变。在平动方面,物体不同方面上可以处于不同的平衡状态,在转动方面,对不同方向的转轴可以处于不同的平衡状态。例如,一个位于光滑水平面上的直管底部的质点,受到平行于管轴方向的扰动时,处于随遇平衡状态;受到与轴垂直方向的扰动时,处于稳定平衡状态,一细棒,当它直立于水平桌面时,是不稳定平衡,当它平放在水平桌面时,是随遇平衡。163、稳度物体稳定的程度叫稳度,一般说来,使一个物体的平衡遭到破坏所需的能量越多,这个平衡的稳度就越高。稳度与重心的高度及支面的大小有关,重心越低,支面越大,稳度越大。1.7 流体静力学流体并没有一定的开头可以自由流动,但具有一定的密度,一般认为理想流体具有不可压缩的特征。171、 静止流体中的压强(1)静止流体内部压强的特点O图1-7-1在静止流体内任何一点处都有压强,这一压强与方向无关仅与该点的深度有关;相连通的静止流体内部同一深度上各点的压强相等。关于流体内部的压强与方向无关,可以证明如下:在静止流体中的某点处任取一个长为的极小的直角三棱液柱,令其两侧面分别在竖直面内和水平面内,作其截面如图1-7-1所示,图中坐标轴x沿水平方向,坐标轴y沿竖直方向,以分别表示此液柱截面三角形的三条边长,且以表示此截面三角形的一个锐角如图1-7-1,又以,分别表示对应侧面上压强的大小,则各侧面所受压力的大小分别为:由此液柱很小,则其重力将远小于它的一个侧面所受到的压力,故可忽略其重力的作用。则由此液柱的平衡条件知上述三力应互相平衡,乃有:即注意到,代入上式便得说明在流体内部的同一点处向各个方向的压强是相等的。(2)静止流体内部压强的大小若静止流体表面处的压强为P。(通常即为与该流体表面相接触的气体的压强),流体的密度为,则此流体表面下深度为h处的压强为由上式可见,在静止流体内部高度差为的两点间的压强差为172、浮力与浮心浮力是物体在流体中所受压力的合力。浸没在静止流体内的物体受到的浮力等于它所排开流体的重量,浮力的方向竖直向上。这就是阿基米德定律,可表示为 浮力的作用点称为浮心,浮心就是与浸没在流体中的物体同形状、同体积那部分流体的重心,它并不等同于物体的重心。只有在物体密度均匀时,它才与浸没在液体中的物体部分的重心重合。173、浮体平衡的稳定性FQGOFQGO(a) (b) 图1-7-2浮在液体表面的浮体,所受浮力与重力大小相等、方向相反,处于平衡状态。浮体平衡的稳定性,将因所受扰动方式的不同而异。显然,浮体对铅垂方向的扰动,其平衡是稳定的;对水平方向的扰动,其平衡是随遇的。浮体对于过质心的水平对称轴的旋转扰动,其平衡的稳定性视具体情况而定。以浮力水面的船体为例:当船体向右倾斜(即船体绕过质心O的水平对称轴转动一小角度)时,其浮心(浮力作用点)Q将向右偏离,浮力F与重力G构成一对力偶,力偶矩将促使船体恢复到原来的方位,如图1-7-2(a)所示,可见船体对这种扰动,其平衡是稳定的。但如果船体重心O太高,船体倾斜所造成的力偶矩也可能促使船体倾斜加剧,这时船体的平衡就是不稳的,如图1-7-2(b)所示。第二讲 运动学2.1质点运动学的基本概念211、参照物和参照系要准确确定质点的位置及其变化,必须事先选取另一个假定不动的物体作参照,这个被选的物体叫做参照物。为了定量地描述物体的运动需要在参照物上建立坐标,构成坐标系。通常选用直角坐标系Oxyz,有时也采用极坐标系。平面直角坐标系一般有三种,一种是两轴沿水平竖直方向,另一是两轴沿平行与垂直斜面方向,第三是两轴沿曲线的切线和法线方向(我们常把这种坐标称为自然坐标)。212、位矢 位移和路程在直角坐标系中,质点的位置可用三个坐标x,y,z表示,当质点运动时,它的坐标是时间的函数x=X(t) y=Y(t) z=Z(t)图2-1-1这就是质点的运动方程。质点的位置也可用从坐标原点O指向质点P(x、y、z)的有向线段来表示。如图2-1-1所示, 也是描述质点在空间中位置的物理量。的长度为质点到原点之间的距离,的方向由余弦、决定,它们之间满足当质点运动时,其位 O2图2-1-2矢的大小和方向也随时间而变,可表示为=(t)。在直角坐标系中,设分别为、沿方向、和单位矢量,则可表示为位矢与坐标原点的选择有关。研究质点的运动,不仅要知道它的位置,还必须知道它的位置的变化情况,如果质点从空间一点运动到另一点,相应的位矢由1变到2,其改变量为称为质点的位移,如图2-1-2所示,位移是矢量,它是从初始位置指向终止位置的一个有向线段。它描写在一定时间内质点位置变动的大小和方向。它与坐标原点的选择无关。213、速度平均速度 质点在一段时间内通过的位移和所用的时间之比叫做这段时间内的平均速度平均速度是矢量,其方向为与的方向相同。平均速度的大小,与所取的时间间隔有关,因此须指明是哪一段时间(或哪一段位移)的平均速度。瞬时速度 当为无限小量,即趋于零时,成为t时刻的瞬时速度,简称速度 瞬时速度是矢量,其方向在轨迹的切线方向。瞬时速度的大小称为速率。速率是标量。214、加速度平均加速度 质点在时间内,速度变化量为,则与的比值为这段时间内的平均加速度平均加速度是矢量,其方向为的方向。瞬时加速度 当为无限小量,即趋于零时,与的比值称为此时刻的瞬时加速度,简称加速度加速度是矢量,其方向就是当趋于零时,速度增量的极限方向。215、匀变速直线运动加速度不随时间t变化的直线运动称为匀变速直线运动。若与同方向,则为匀加速直线运动;若与反方向,则为匀减速直线运动。匀变速直线运动的规律为: 匀变速直线运动的规律也可以用图像描述。其位移时间图像(st图)和速度时间图像(vt图)分别如图2-1-3和图2-1-4所示。Ost12t1t2图2-1-3Ovt图2-1-4从(st)图像可得出:(1)任意一段时间内的位移。(2)平均速度,在()的时间内的平均速度的大小,是通过图线上点1、点2的割线的斜率。(3)瞬时速度,图线上某点的切线的斜率值,等于该时刻的速度值。从st图像可得出:从(vt)图像可得出:(1)任意时刻的速度。(2)任意一段时间内的位移,时间内的位移等于vt图线,时刻与横轴所围的“面积”。这一结论对非匀变速直线运动同样成立。(3)加速度,vt图线的斜率等于加速度的值。若为非匀变速直线运动,则vt图线任一点切线的斜率即为该时刻的瞬时加速度的大小。2.2 运动的合成与分解相对运动221、运动的合成与分解(1)矢量的合成与分解矢量的合成与分解的基本方法是平行四边形法则,即两分量构成平行四边形的两邻边,合矢量为该平行四边形与两分量共点的对角线。由平行四边形法则又衍生出三角形法则,多个矢量的合成又可推导出多边形法则。同一直线上的矢量的合成与分解可以简化为代数运算,由此,不在同一直线上的矢量的合成与分解一般通过正交分解法进行运算,即把各个矢量向互相垂直的坐标轴投影,先在各轴上进行代数运算之后,再进行矢量运算。(2)运动的合成和分解运动的合成与分解是矢量的合成与分解的一种。运动的合成与分解一般包括位移、速度、加速度等的合成与分解。运动的合成与分解的特点主要有:运动的合成与分解总是与力的作用相对应的;各个分运动有互不相干的性质,即各个方向上的运动与其他方向的运动存在与否无关,这与力的独立作用原理是对应的;位移等物理量是在一段时间内才可完成的,故他们的合成与分解要讲究等时性,即各个运动要取相同时间内的位移;瞬时速度等物理量是指某一时刻的,故它们的合成分解要讲究瞬时性,即必须取同一时刻的速度。两直线运动的合成不一定就是直线运动,这一点同学们可以证明。如:两匀速直线运动的合成仍为匀速直线运动;两初速为零(同一时刻)的匀加速直线运动的合成仍为初速为零的匀加速直线运动;在同一直线上的一个匀速运动和一个初速为零的匀变速运动的合运动是一个初速不为零的匀变速直线运动,如:竖上抛与竖下抛运动;不在同一直线上的一个匀速运动与一个初速为零的匀加速直线运动的合成是一个曲线运动,如:斜抛运动。222、相对运动任何物体的运动都是相对于一定的参照系而言的,相对于不同的参照系,同一物体的运动往往具有不同的特征、不同的运动学量。通常将相对观察者静止的参照系称为静止参照系;将相对观察者运动的参照系称为运动参照系。物体相对静止参照系的运动称为绝对运动,相应的速度和加速度分别称为绝对速度和绝对加速度;物体相对运动参照系的运动称为相对运动,相应的速度和加速度分别称为相对速度和相对加速度;而运动参照系相对静止参照系的运动称为牵连运动,相应的速度和加速度分别称为牵连速度和牵连加速度。绝对运动、相对运动、牵连运动的速度关系是:绝对速度等于相对速度和牵连速度的矢量和。这一结论对运动参照系是相对于静止参照系作平动还是转动都成立。当运动参照系相对静止参照系作平动时,加速度也存在同样的关系:当运动参照系相对静止参照系作转动时,这一关系不成立。如果有一辆平板火车正在行驶,速度为(脚标“火地”表示火车相对地面,下同)。有一个大胆的驾驶员驾驶着一辆小汽车在火车上行驶,相对火车的速度为,那么很明显,汽车相对地面的速度为:(注意:和不一定在一条直线上)如果汽车中有一只小狗,以相对汽车为的速度在奔跑,那么小狗相对地面的速度就是从以上二式中可看到,上列相对运动的式子要遵守以下几条原则:合速度的前脚标与第一个分速度的前脚标相同。合速度的后脚标和最后一个分速度的后脚标相同。前面一个分速度的后脚标和相邻的后面一个分速度的前脚标相同。所有分速度都用矢量合成法相加。速度的前后脚标对调,改变符号。以上求相对速度的式子也同样适用于求相对位移和相对加速度。相对运动有着非常广泛的应用,许多问题通过它的运用可大为简化,以下举两个例子。6030vB=20m/svA=10m/s图2-2-1例 如图2-2-1所示,在同一铅垂面上向图示的两个方向以的初速度抛出A、B两个质点,问1s后A、B相距多远?这道题可以取一个初速度为零,当A、B抛出时开始以加速度g向下运动的参考系。在这个参考系中,A、B二个质点都做匀速直线运动,而且方向互相垂直,它们之间的距离m在空间某一点O,向三维空间的各个方向以相同的速度射出很多个小球,球ts之后这些小球中离得最远的二个小球之间的距离是多少(假设ts之内所有小球都未与其它物体碰撞)?这道题初看是一个比较复杂的问题,要考虑向各个方向射出的小球的情况。但如果我们取一个在小球射出的同时开始自O点自由下落的参考系,所有小球就都始终在以O点为球心的球面上,球的半径是,那么离得最远的两个小球之间的距离自然就是球的直径2。2.3抛体运动PQO1R1O2a1a2b1b2图2-3-1AVAVBV1VBV2CVB图2-3-2231、曲线运动的基本知识轨迹为曲线的运动叫曲线运动。它一定是一个变速运动。图2-3-1表示一质点作曲线运动,它经过P点时,在P点两旁的轨迹上取两点,过三点可作一圆,当这两点无限趋近于P点时,则圆亦趋近于一个定圆,我们把这个圆叫P点的曲率圆,曲率圆的半径叫P点的曲率半径,曲率圆的圆心叫P点的曲率中心,曲率半径的倒数叫P点的曲率。如图2-3-1,亦可做出Q点的曲率圆。曲率半径大,曲率小,表示曲线弯曲较缓,曲率半径小,曲率大,表示曲线弯曲厉害。直线可认为是曲率半径为无穷大的曲线。质点做曲线运动的瞬时速度的方向总是沿该点的切线方向。如图2-3-2所示,质点在t时间内沿曲线由A点运动到B点,速度由V变化到VB,则其速度增量为两者之矢量差,=VBV,这个速度增量又可分解成两个分量:在VB上取一段AC等于V,则V分解成V和V,其中V表示质点由A运动到B的速度方向上的增量,V表示速度大小上的增量。法向加速度a表示质点作曲线运动时速度方向改变的快慢,其大小为在A点的曲率圆的向心加速度:其方向指向A点的曲率中心。切向加速度表示质点作曲线运动时速度大小改变的快慢,方向亦沿切线方向,其大小为总加速度a方法向加速度和切向加速度的矢量和。232、抛物运动是曲线运动的一个重要特例物体以一定的初速度抛出后,若忽略空气阻力,且物体的运动在地球表面附近,它的运动高度远远小于地球半径,则在运动过程中,其加速度恒为竖直向下的重力加速度。因此,抛体运动是一种加速度恒定的曲线运动。根据运动的叠加原理,抛体运动可看成是由两个直线运动叠加而成。常用的处理方法是:将抛体运 动分解为水平方向的匀速直线运动和竖直方向的匀变速直线运动。如图2-3-3。取抛物轨迹所在平面为平面,抛出点为坐标原点,水平方向为x轴,竖直方向为y轴。则抛体运动的规律为:其轨迹方程为这是开口向下的抛物线方程。在抛出点和落地点在同一水平面上的情况下,飞行时间T,射程R和射高H分别为 抛体运动具有对称性,上升时间和下降时间(抛出点与落地点在同一水平面上)相等(一般地,从某一高度上升到最高点和从最高点下降到同一高度的时间相等);上升和下降时经过同一高度时速度大小相等,速度方向与水平方向的夹角大小相等。下面介绍一种特殊的抛体运动平抛运动:质点只在重力作用下,且具有水平方向的初速度的运动叫平抛运动。它可以看成水平方向上的匀速运动(速度为v0)与竖直方向上的自由落体运动的合成。速度:采用水平竖直方向的直角坐标可得: ,其合速度的大小为,其合速度的方向为(设水平方向夹角为),可见,当时,即表示速度趋近于自由落体的速度。位移:仍按上述坐标就有,。仿上面讨论也可得到同样结论,当时间很长时,平抛运动趋近于自由落体运动。加速度:采用水平和竖直方向直角坐标系有,,用自然坐标进行分解,如图2-3-4其法向加速度为,切向加速度为,为速度与水平向方的夹角,将速度在水平与竖直方向的坐标系中分解可知:xyOV0gVVxVy图2-3-4由此可知,其法向加速度和切向加速度分别为:由上两式可以看出,随着时间的推移,法向加速度逐渐变小趋近于零,切向加速度趋近于定值g,这表示越来越接近竖直下抛运动。在生活中也很容易看到,平抛物体的远处时就接近竖直下落了。运动的轨迹方程:从方程可以看出,此图线是抛物线,过原点,且越大,图线张开程度大,即射程大。根据运动的独立性,经常把斜抛运动分解成水平方向匀速直线运动和竖直方向上的竖直上抛运动来处理,但有时也可以用其它的分解分法。ABCsh图2-3-5抛体运动另一种常用的分解方法是:分解沿方向的速度为的匀速直线运动和沿竖直方向的自由落体运动二个分运动。如图2-3-5所示,从A点以的初速度抛出一个小球,在离A点水平距离为s处有一堵高度为h的墙BC,要求小球能越过B点。ABChD图2-3-6问小球以怎样的角度抛出,才能使最小?将斜抛运动看成是方向的匀速直线运动和另一个自由落体运动的合运动,如图2-3-6所示。在位移三角形ADB在用正弦定理 轨迹:由直角坐标的位移公式消去时间参数t便可得到直角坐标系中的平抛运由式中第一个等式可得 将式代入式中第二个等式当有极大值1时,即时,有极小值。因为,所以当小球越过墙顶时,y方向的位移为零,由式可得ABCxyg图2-3-7式代入式:我们还可用另一种处理方法以AB方向作为x轴(图2-3-7)这样一取,小球在x、y方向上做的都是匀变速运动了,和g都要正交分解到x、y方向上去。小球运动的方程为当最大,即时,有极小值2.4质点的圆周运动 刚体平面平行运动与定轴转动241、质点的圆周运动xyOPR图2-4-1(1)匀速圆周运动如图2-4-1所示,质点P在半径为R的圆周上运动时,它的位置可用角度表示(习惯上以逆时针转角正,顺时针转角为负),转动的快慢用角速度表示:质点P的速度方向在圆的切线方向,大小为(或v)为常量的圆周运动称为匀速圆周运动。这里的“匀速”是指匀角速度或匀速率,速度的方向时刻在变。因此,匀速圆周运动的质点具有加速度,其加速度沿半径指向圆心,称为向心加速度(法向加速度)。向心加速度只改变速度的方向,不改变速度的大小。(2)变速圆周运动 (或v)随时间变化的圆周运动,称为变速圆周运动,描述角速度变化快慢的物理量为角加速度质点作变速圆周运动时,速度的大小和方向都在变化。将速度增量分解为与平行的分量和垂直的分量,如图2-4-2。相当于匀速圆周运动个的,的大小为PR图2-4-2=质点P的加速度为其中就是切向加速度和法向加速度。为常量的圆周运动,称为匀变速圆周运动,类似于变速直线运动的规律,有(3)圆周运动也可以分解为二个互相垂直方向上的分运动。参看图2-4-3一个质点A在t=0时刻从x正方向开始沿圆周逆时针方向做匀速圆周运动,在x方向上OAR图2-4-3在y方向上: 从x和y方向上的位移、速度和加速度时间t表达的参数方程可以看出:匀速圆周运动可以分为两个互相垂直方向上的简谐运动,它们的相位相差242、刚体的平面平行运动刚体平面平行运动的特征是,刚体上的任意质点都作平行于一个固定平面的运动。如圆柱沿斜面的滚动,即为平面平行运动。可取刚体上任意平行于固定平面的截面作为研究对象。刚体的平面平行运动,常有两种研究方法:一种是看成随基点(截面上任意一点都可作为基点)的平动和绕基点的转动的合运动;另一种是选取截面上的瞬时转动中心S(简称瞬心)为基点。瞬心即指某瞬间截面上速度为零的点。这样,刚体的平面平行运动看成仅作绕瞬心的转动。ABSAS(a) (b) 图2-4-4确定瞬心的方法有两种:如图2-4-4(a)所示,若已知截面上两点的速度,则与两速度方向垂直的直线的交点即为瞬心。或如图2-4-4(b)所示,已知截面转动的角速度及截面上某一点A的速度,则在与速度垂直的直线上,与A点距离为的点即为瞬心。注意,瞬心的速度为零,加速度不一定为零。243、刚体的定轴转动刚体运动时,刚体上或其延展部分有一根不动直线,该直线称为定轴,刚体绕这一轴转动。刚体作定轴转动时,其上各点都在与轴垂直的平面内作圆周运动,各点作圆周运动的半径不同,在某一时刻,刚体上所有各点的角位移、角速度和角加速度都是相同的。而各点的线位移、线速度和线加速度则随各点离开转轴的垂直距离不同而不同。244、一些求曲率半径的特殊方法xypQ如图2-4-5先看椭圆曲线,要求其两顶点处的曲率半径。介绍以下两种方法:(1)将椭圆看成是半径R=A(设AB)的圆在平面上的投影,圆平面和平面的夹角满足关系式(如图2-4-5)设一个质点以速率v在圆上做匀速圆周运动,则向心加速度,从上图中可以看出,当顶点的投影在椭圆的长轴(x轴)上的P点时,其速率和加速度分别为: , 当质点的投影在椭圆的短轴(y轴)上的Q点时,其速率和加速度分别为: 。因此椭圆曲线在P、Q的曲率半径分别为: QPABxy图2-4-6(2)将椭圆看成是二个简谐运动的合成,可以把椭圆的参数方程(设AB)(如图2-4-6) 可改写为 即可进一步写出x,y二个方程的速度v和加速度a:那么在长轴端点P处()的曲率半径:在短轴端点Q处()的曲率半径xy图2-4-7再把抛物线y=Ax,要求其任意一点的曲率半径(如图2-4-7)因为抛物线可以写作参数方程其中,这样就可以导出 对任意一个t值: v=a=acos=a所以这一点的曲率半径将t=代入,可得 因为,所以抛物线y=Ax上任意一点的曲率半径25几种速度的特殊求法251、相关的速度AB图2-5-1当绳端在做既不沿绳方向,又不垂直于绳方向的运动时,一般要将绳端的运动分解为沿绳方向和垂直于绳方向二个分运动。如图2-5-1所示的情况,绳AB拉AB图2-5-2着物体m在水平面上运动,A端以速度v做匀速运动,问m做什么运动?有的同学会将绳的速度v分解成竖直分速度vsina和水平分速度vcosa,以为木块的速度(uv)这是错误的。因为实际上木块并没有一个向上的分速度。应该将绳端B实际上的水平速度分解成沿绳方向的分速v=和垂直于绳的分速v=,v使绳子缩短,所以v=v,v使绳子围绕滑轮转动。因此,而且随着a的增大而越来越大。如图2-5-2所示,杆AB沿滑下,A、B二端的速度和也是二个相关的速度。将分解成沿杆方向的分速和垂直于杆的分速。由于杆的长度不会发生变化,所以,即,即ABCDM图2-5-3(a)ABMO图2-5-3(b)252、两杆交点的运动两杆的交点同时参与了二杆的运动,而且相对每一根杆还有自己的运动,因而是一种比较复杂的运动。图2-5-3(a)中的AC、BD两杆均以角速度绕A、B两固定轴在同一竖直面内转动,转动方向如图示。当t=0时,60,试求t时刻两棒交点M点的速度和加速度。t=0时,ABM为等边三角形,因此AM=BM=,它的外接圆半径R=OM=,图2-5-3(b)。二杆旋转过程中,角增大的角度一直等于角减小的角度,所以M角的大小始终不变(等于60),因此M点既不能偏向圆内也不能偏向圆外,只能沿着圆周移动,因为和是对着同一段圆弧()的圆心角和圆周角,所以=2,即M以2的角速度绕O点做匀速圆周运动,任意时刻t的速度大小恒为向心加速度的大小恒为 图2-5-4(a)再看图2-5-4(a),一平面内有二根细杆和,各自以垂直于自己的速度和在该平面内运动,试求交点相对于纸平面的速率及交点相对于每根杆的速率。参考图2-5-4(b),经过时间之后,移动到了的位置,移动到了的位置,和的原位置交于点,和交于点。=OAB图2-5-4(b)在中:因为角和角互补,所以因此两杆交点相对于纸平面的速度不难看出,经过时间后,原交点在上的位置移动到了A位置,因此交点相对的位移就是,交点相对的速度就是:=用同样的方法可以求出交点相对的速度因为可以取得无限小,因此上述讨论与是否为常量无关。如果是变量,上述表达式仍然可以表达二杆交点某一时刻的瞬时速度。如果和的方向不是与杆垂直,这个问题应该如何解决?读者可以进行进一步的讨论。第三讲 运动定律3.1牛顿定律311、牛顿第一定律任何物体都保持静止或匀速直线运动状态,直到其他物体所作用的力迫使它改变这种状态为止。这是牛顿第一定律的内容。牛顿第一定律是质点动力学的出发点。物体保持静止状态或匀速直线运动状态的性质称为惯性。牛顿第一定律又称为惯性定律,惯性定律是物体的固有属性,可用质量来量度。无论是静止还是匀速直线运动状态,其速度都是不变的。速度不变的运动也就是没有加速度的运动,所以物体如果不受到其他物体的作用,就作没有加速度的运动,牛顿第一定律指出了力是改变物体运动状态的原因。牛顿第一定律只在一类特殊的参照系中成立,此参照系称为惯性参照系。简称惯性系。相对某一惯性系作匀速运动的参照系必定也是惯性系,牛顿第一定律不成立的参照系称为非惯性参照系,简称非惯性系,非惯性系相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 消防员车辆救援
- 普通员工素质培训
- 胃镜下空肠营养管置入术
- 消防的四个能力
- 日本艺术馆介绍
- 计算机数值方法
- 祠堂建筑设计讲解
- 力量训练的意义
- 透析患者营养管理要点
- 心脏外科护理科普
- 人教版二年级数学上册期中测试卷(带答案)
- 实验室仪器设备培训考试题及答案
- 云南民族大学附属高级中学2026届高三联考卷(二)化学(含答案)
- 【初中生物】动物的生殖和发育(第1课时)课件-2025-2026学年北师大版生物八年级上册
- 2025年海南省中小学教师招聘考试教育综合知识试题及答案解析
- 教师教学反思记录模板及范例
- 应急预案寺院
- 2025年时事政治热点题库考试试题库及完整答案详解(历年真题)
- 临床医学研究设计及统计学问题课件
- 《郑伯克段于鄢》PPT
- 高速铁路客运设施设备课件
评论
0/150
提交评论