




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 / 23 XX 届高考数学空间向量与立体几何备考复习教案 本资料为 WoRD文档,请点击下载地址下载全文下载地址莲山课 件 k 专题四:立体几何 第三讲空间向量与立体几何 【最新考纲透析】 1空间向量及其运算 ( 1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的线性运算及其坐标表示。 ( 2)掌握空间向量的线性运算及其坐标表示。 ( 3)掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 2空间向量的应用 ( 1)理解直线的方向向量与平面 的法向量。 ( 2)能用向量语言表述直线与直线,直线与平面,平面与平面的垂直、平行关系。 ( 3)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理)。 2 / 23 ( 4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用。 【核心要点突破】 要点考向 1:利用空间向量证明空间位置关系 考情聚焦: 1平行与垂直是空间关系中最重要的位置关系,也是每年的必考内容,利用空间向量判断空间位置关系更是近几年高考题的新亮点。 2题型灵活多样,难 度为中档题,且常考常新。 考向链接: 1空间中线面的平行与垂直是立体几何中经常考查的一个重要内容,一方面考查学生的空间想象能力和逻辑推理能力;另一个方面考查 “ 向量法 ” 的应用。 2空间中线面的平行与垂直的证明有两个思路:一是利用相应的判定定理和性质定理去解决;二是利用空间向量来论证。 例 1:( XX安徽高考理科 18)如图,在多面体中,四边形是正方形, ,为的中点。 (1)求证: 平面; (2)求证:平面; (3)求二面角的大小。 【命题立意】本题主要考查了空 间几何体的线面平行、线面垂直的证明、二面角的求解的问题,考查了考生的空间想象3 / 23 能力、推理论证能力和运算求解能力。 【思路点拨】可以采用综合法证明,亦可采用向量法证明。 【规范解答】 (1) (2) (3) 【方法技巧】 1、证明线面平行通常转化为证明直线与平面内的一条直线平行; 2、证明线面垂直通常转化为证明直线与平面内的两条相交直线垂直; 3、确定二面角的大小,可以先构造二面角的平面角,然后转化到一个合适的三角形中进行求解。 4、以上立体几何中的常见问题,也可 以采用向量法建立空间直角坐标系,转化为向量问题进行求解证明。应用向量法4 / 23 解题,思路简单,易于操作,推荐使用。 要点考向 2:利用空间向量求线线角、线面角 考情聚焦: 1线线角、线面角是高考命题的重点内容,几乎每年都考。 2在各类题型中均可出现,特别以解答题为主,属于低、中档题。 考向链接: 1利用空间向量求两异面直线所成的角 ,直线与平面所成的角的方法及公式为 : ( 1)异面直线所成角 设分别为异面直线的方向向量,则 ( 2)线面角 设是直线的方向向量,是平面的法向量,则 2运用空间向量坐标运算 求空间角的一般步骤为: ( 1)建立恰当的空间直角坐标。( 2)求出相关点的坐标。( 3)写出向量坐标。( 4)结合公式进行论证、计算。( 5)转化为几何结论。 例 2:( XX辽宁高考理科 19)已知三棱锥 P ABc 中, PAABc , ABAc , PA=Ac=AB, N 为 AB 上一点,AB=4AN,m,S 分别为 PB,Bc的中点 . ( )证明: cmSN ; ( )求 SN与平面 cmN所成角的大小 . 【命题立意】本题考查了空间几何体的线面与面面垂直、线5 / 23 面角的求解以及几何体的计算问题,考查了考生 的空间想象能力、推理论证能力和运算求解能力。 【思路点拨】建系,写出有关点坐标、向量的坐标, 计算的数量积,写出答案; 求平面 cmN的法向量,求线面角的余弦,求线面角,写出答案。 【规范解答】 设 PA 1,以 A 为原点,射线 AB、 Ac、 AP 分别为 x,y,z 轴正方向建立空间直角坐标系,如图。 则 P(0,0,1), c(0,1,0), B(2,0,0), m(1,0,), N(,0,0),S(1,0) ( I) 【方法技巧】( 1)空间中证明线线,线面垂直,经常用向量法。 ( 2)求线面角往往转化成直线 的方向向量与平面的法向量的夹角问题来解决。 ( 3)线面角的范围是 0 90 ,因此直线的方向向量与平面法向量的夹角的余弦是非负的,要取绝对值。 要点考向 3:利用空间向量求二面角 考情聚焦: 1二面角是高考命题的重点内容,是年年必考的知识点。 6 / 23 2常以解答题的形式出现,属中档题或高档题。 考向链接:求二面角最常用的办法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角。 其计算公式为:设分别为平面的法向量,则与互 补或相等, 例 3:( XX天津高考理科 9) 如图,在长方体中,、分别是棱 , 上的点, , 求异面直线与所成角的余弦值; 证明平面 求二面角的正弦值。 【命题立意】本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力。 【思路点拨】建立空间直角坐标系或常规方法处理问题。 【规范解答】方法一:以 A 为坐标原点, AB 所在直线为 X轴, AD 所在直线为 y 轴建立空间直角坐标系(如图所 示),设 ,依题意得 , 易得 ,,于是, 7 / 23 所以异面直线与所成角的余弦值为。 证明:已知 , 于是 =0, =0.因此, ,又 所以平面 (3)解:设平面的法向量,则 ,即 不妨令 X=1,可得。由( 2)可知,为平面的一个法向量。 于是,从而 所以二面角的正弦值为 要点考向 4:利用空间向量解决探索性问题 考情聚焦:立体几何中已知结论寻求结论成立的条件(或是否存在问题),能较好地考查学生的逻辑推理能力和空间想象能力,是今后考查的重点,也能很好地体现新课标高考的特点。 例 4:( XX福建高考理科 18)如图,圆柱oo1 内有一个三棱柱 ABc-A1B1c1,三棱柱的底面为圆柱底面的内接三角形,且 AB是圆 o 的直径。 ( I)证明:平面 A1Acc1平面 B1Bcc1; ( II)设 AB AA1,在圆柱 oo1 内随机选取一点,记该点取自三棱柱 ABc-A1B1c1 内的概率为 p。 ( i)当点 c 在圆周上运动时,求 p 的最大值; ( ii)记平面 A1Acc1 与平面 B1oc 所成的角为()。当 p 取最大值时,求 cos 的值。 8 / 23 【命题立意】本小题主要考查直线与直线、直线与 平面、平面与平面的位置关系,以及几何体的体积、几何概型等基础知识;考查空间想象能力、推理论证能力、运算求解能力;考查数形结合思想、化归与转化思想、必然与或然思想。 【思路点拨】第一步先由线线垂直得到线面垂直,再由线面垂直得到面面垂直;第二步首先求出长方体的体积,并求解三棱柱的体积的最大值,利用体积比计算出几何概率。立体几何中我们可以利用向量处理角度问题,立体几何中涉及的角:有异面直线所成的角、直线与平面所成的角、二面角等。关于角的计算,均可归结为两个向量的夹角。对于空间向量,有,利用这一结论,我们可以较方 便地处理立体几何中的角的问题。 【规范解答】( I)平面,平面,又是的直径,又,平面,而平面,所以平面平面; ( II)( i)设圆柱的底面半径为,则,故圆柱的体积为,设三棱柱 ABc-A1B1c1,的体积为,所以,所以当取得最大值时取得最大值。又因为点在圆周上运动,所以当时,的面积最大,进而,三棱柱 ABc-A1B1c1,的体积最大,且其最大值为,故的最大值为; ( ii)由( i)知,取最大值时,于是,以为坐标原点,建立空间直角坐标系,则平面,是平面的一个法向量,设平面的法向量为,由于, 9 / 23 所以平面的一 个法向量为,。 【方法技巧】立体几何中我们可以利用空间向量处理常见的问题,本题的( II)( i)也可以采用向量法进行证明:以为坐标原点,建立空间直角坐标系,设圆柱的底面半径为,则,故圆柱的体积为,设三棱柱 ABc-A1B1c1,的体积为,所以,所以当取得最大值时取得最大值。,所以当时的的面积最大,进而,三棱柱 ABc-A1B1c1,的体积最大,且其最大值为,故的最大值为; 【高考真题探究】 1.( XX广东高考理科 0)若向量 =( 1,1,x) ,=(1,2,1),=(1,1,1),满足条件 =-2,则 =. 【命题立意】本题考察空间向量的坐标运算及向量的数量积运算 . 【思路点拨】先算出、,再由向量的数量积列出方程,从而求出 【规范解答】,由 得,即,解得 【答案】 2 2.( XX浙江高考理科 20)如图,在矩形中,点分别在线段 上, .沿直线将翻折成,使平面 . ( )求二面角的余弦值; 10 / 23 ( )点分别在线段上,若沿直线将四边形向上翻折,使与重合,求线段的长。 【命题立意】本题主要考察空间点、线、面位置关系,二面角等基础知识,考查空间 向量的应用,同时考查空间想象能力和运算求解能力。 【思路点拨】方法一利用相应的垂直关系建立空间直角坐标系,利用空间向量解决问题;方法二利用几何法解决求二面角问题和翻折问题。 【规范解答】方法一:( )取线段 EF的中点 H,连结,因为 =及 H 是 EF的中点,所以 ,又因为平面平面 . 如图建立空间直角坐标系 A-xyz,则( 2, 2,), c( 10, 8,0), F( 4, 0, 0), D( 10, 0, 0) .故 =( -2, 2, 2), =( 6,0, 0) .设 =( x,y,z)为平面的一个法向量,所以。 取,则。 又平面的一个法向量,故。 所以二面角的余弦值为 ( )设,则, 因为翻折后,与重合,所以, 故,得, 所以。 3.( XX陕西高考理科 8)如图,在四棱锥 P ABcD中,底面 ABcD是矩形 PA 平面 ABcD, AP=AB=2,11 / 23 Bc=, E, F 分别是 AD,Pc的中点 . ( )证明: Pc 平面 BEF; ( )求平面 BEF 与平面 BAP夹角的大小。 【命题立意】本题考查了空间几何体的的线线、线面垂直、以及二面角的求解问题,考查了同学们的空间想象能力以及空间思维能力以及利用空间向量解决立体几 何问题的方法与技巧。 【思路点拨】思路一:建立空间直角坐标系,利用空间向量求解;思路二:利用几何法求解 . 【规范解答】解法一( )如图,以 A 为坐标原点, AB, AD,AP 所在的直线分别为 x, y, z 轴建立空间直角坐标系 .AP=AB=2 , Bc=,四边形 ABcD是矩形 . A , B, c, D 的坐标为 A(0,0,0),B(2,0,0),c(2,0), D(0,0), P(0,0,2) 又 E, F 分别是 AD, Pc的中点, E(0 , 0),F(1, 1). = ( 2, -2) =( -1, 1) =( 1,0,1), = -2+4-2=0, =2+0-2=0, , , PcBF,PcEF, Pc 平面 BEF ( II)由( I)知平面 BEF的法向量 12 / 23 平面 BAP的法向量 设平面 BEF与平面 BAP的夹角为, 则 , 平面 BEF与平面 BAP的夹角为 4.( XX重庆高考文科 20)如题图,四棱锥中, 底面为矩形, 点是棱的中点 . ( I)证明:; ( II)若,求二面角的平面角的余弦值 . 【命题立意】本小题考查空间直线与直线、直线与 平面的位置关系, 考查余弦定理及其应用,考查空间向量的基础知识和在立体几何中的应用,考查空间想象能力,推理论证能力,运算求解能力,考查数形结合的思想,考查化归与转化的思想 . 【思路点拨】( 1)通过证明线线垂直证明结论:线面垂直,( II)作出二面角的平面角,再利用三角函数、余弦定理等知识求余弦值 .或建立空间直角坐标系,利用向量的坐标运算证明垂直和求出有关角的三角函数值 . 【规范解答】( I)以为坐标原点, 射线分别为轴、轴、轴的正半轴, 建立空间直角坐标系 .如图所示 . 13 / 23 设设,则,。于是,则, 所以,故 . ( II)设平面 BEc的法向量为,由( )知,故可取 .设平面 DEc的法向量,则,由,得 D, G, 从而,故,所以,可取,则,从而 . 【方法技巧】( 1)用几何法推理证明、计算求解;( 2)空间向量坐标法,通过向量的坐标运算解题 . 5.( XX江西高考文科 ) 如图,与都是边长为 2 的正三角形, 平面平面,平面, . ( 1)求直线与平面所成的角的大小; ( 2)求平面与平面所成的二面角的正弦值 . 【命题立意】本题主要考查空间几何体的线线、线面与面面垂直 关系及平行关系,考查空间线面角、二面角的问题以及有关的计算问题,考查空间向量的坐标运算,考查数形结合思想,考查考生的空间想象能力、推理论证能力、划归转化能力和运算求解能力。 【思路点拨】本题主要有两种方法,法一:几何法( 1)直接找出线面角,然后求解; ( 2)对二面角的求法思路,一般是分三步 “ 作 ” ,“ 证 ” , “ 求 ”. 其中 “ 作 ” 是关键, “ 证 ” 是难点 .法二:建立空间直角坐标系,利用空间向量中的法14 / 23 向量求解 . 【规范解答】取 cD中点 o,连 oB, om,则 oBcD , omcD ,又平面平面 ,则 mo 平面 . 以 o 为原点,直线 oc、 Bo、 om为 x 轴, y 轴, z 轴,建立空间直角坐标系如图 . oB=om=,则各点坐标分别为 o( 0, 0, 0), c( 1, 0, 0), m( 0, 0,), B( 0, -, 0), A( 0, -, 2), ( 1)设直线 Am与平面 BcD所成的角为 . 因( 0,),平面 的法向量为 .则有 ,所以 . ( 2), . 设平面 Acm的法向量为,由得 . 解得,取 .又平面 BcD的法向量为, 则 设所求二面角为,则 . 6.( XX四川高考理科 18) 已知正方体的棱长为 1, 点是棱的中点, 点是对角线的中点 . ( )求证:为异面直线和的公垂线; ( )求二面角的大小; ( )求三棱锥的体积 . 15 / 23 【命题立意】本题主要考查异面直线、直线与平面垂直、 二面角、正方体、三棱锥体积等基础知识,并考查空间想象能力和逻辑推理能力,考查应用向量知识解决数学问题的能力,转化与化归的数学思想 . 【思路点拨】方法一:几何法问题( ),分别证明,即可 . 问题( II)首先利用三垂线定理,作出二面角的平面角,然后通过平面角所在的直角三角形,求出平面角的一个三角函数值,便可解决问题 . 问题( )选择便于计算的底面和高,观察图形可知,和都在平面内,且,故,利用三棱锥的体积公式很快求出 . 方法二:建立空间直角坐标系,利用空间向量中的法向量求解 . 【规范解答】 (方法一 ):( I)连结 .取的中点,则为的中点,连结 . 点是棱的中点,点是的中点, 由,得 . , . . 又 与异面直线和都相交, 故为异面直线和的公垂线, 16 / 23 ( II)取的中点,连结,则, 过点过点作于,连结,则由三垂线 定理得, . 为二面角的平面角 . . 在中 . 故二面角的大小为 . ( III)易 知, ,且和都在平面内, 点到平面的距离, . (方法二 ):以点为坐标原点,建立如图所示的空间直角坐标系, 则, ( I) 点是棱的中点,点是的中点, , , ,. , , 又 与异面直线和都相交, 故为异面直线和的公垂线, ( II)设平面的一个法向量为, , . 即 17 / 23 取,则 . 取平面的一个法向量 . , 由图可知,二面角的平面角为锐角, 故二面角的大小为 . ( III)易知,设平面的一个法向量为, , 即 取,则,从而 . 点到平面的距离 . . 【跟踪模拟训练】 一、选择题 (每小题 6 分,共 36 分 ) 1.已知点 A( -3,1,-4),则点 A 关于 x 轴的对称点的坐标为() (A)( -3,-1,4) (B)(-3,-1,-4) (c)(3,1,4) (D)(3,-1,-4) 2.在正三棱柱 ABc A1B1c1 中, D 是 Ac的中点, AB1Bc1 ,则平面 DBc1与平面 cBc1所成的角为 () (A)30(B)45(c)60(D)90 18 / 23 3.设动直线与函数和的图象分别交于、两点,则的最大值为() A B c 2D 3 4.在直角坐 标系中,设,沿轴把坐标平面折成的二面角后,的长为() A B c D 5.矩形 ABcD 中, AB=4, Bc=3,沿 Ac 将矩形 ABcD 折成一个直二面角 B Ac D,则四面体 ABcD 的外接球的体积为() A B c D 6.如图:在平行六面体中,为与的交点。若,则下列向量中与相等的向量是() ( A)( B) ( c)( D) 二、填空题(每小题 6 分,共 18 分) 7,是空间交于同一点的互相垂直的三条直线,点到这三条直线的距离分别为 ,,则 ,则 _。 8平行六面体 ABcD-A1B1c1D1 中, AB=2, AA1=2, AD=1,且AB、 AD、 AA1两两之间夹角均为 600,则 = 9将正方形沿对角线折成直二面角后,有下列四个结论: ( 1);( 2)是等边三角形; 19 / 23 ( 3)与平面成 60 ;( 4)与所成的角为 60 其中正确结论的序号为 _(填上所有正确结论的序号) 三、解答题(共 46分) 10.如图,在四棱锥 P ABcD 中,底面是边长为 2 的菱形,BAD=60 ,对角线 Ac与 BD相交于点 o, ,E、 F 分别是 Bc、AP的中点 ( 1)求证: EF 平面 PcD; ( 2)求二面角 A BP D 的余弦值 11.某组合体由直三棱柱与正三棱锥组成,如图所示,其中,它的正视图、侧视图、俯视图的面积分别为 +1, +1 ( 1)求直线与平面所成角的正弦; ( 2)在线段上是否存在点,使平面,若存在,确定点的位置;若不存在,说明理由 12.如图,三棱柱中,面, ,,为的中点。 (I)求证:面; () 求二面角的余弦值 20 / 23 参考答案 1【解析】选 A. 点 A 关于 x 轴对称点的规律是在 x 轴上的坐标不变,在 y 轴, z 轴上的坐标分别变为相反数, 点A( -3, 1, -4)关于 x 轴的对称点的坐标为( -3,-1,4) . 2【解析】选 B.以 A 为坐标原点, Ac、 AA1分别为 y 轴和 z轴建立空间直角坐标系 .设底面边长为 2a.侧棱长为 2b. 3 D 4 D 5 c 6 A 7 64 8 3 9( 1)( 2)( 4) 10解:( 1)证明:取 PD的中点 G,连接 FG、 cG FG 是 PAD 的中卫县, FG , 在菱形 ABcD中, ADBc,又 E 为 Bc的中点, cEFG , 四边形 EFGc是平行四边形, EFcG 又 EF面 PcD, cG面 PcD, EF 面 PcD ( 2)法 1:以 o 为原点, oB, oc, oP所在直线分别为、轴21 / 23 建立如 图所示的空间直角坐标系。 则 0( 0, 0, 0), A( 0, 0), B( 1, 0, 0)( 0, 0,) =( 1, 0) =( 0,) 设面 ABP的发向量为,则 ,即即 取 又, oA 面 PBD, 为面 PBD的发向量, = ( 0, 0) . 所以所求二面角的余弦值为 法 2:在菱形 ABcD中, AcBD , oP 面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年门面租赁合同范本
- 2025河南郑州城建职业学院招聘管理岗、教师、辅导员考前自测高频考点模拟试题(含答案详解)
- 2025标准版委托贷款合同样本
- 2025机械设备的货物买卖合同
- 2025设备租赁合同书范本
- 2025年我国合同法中格式合同缺陷的法律调整及不安抗辩权的适用条件
- 2025年版个人借款合同范本下载
- 2025合规的独家经销合同
- 2025年浙江大学医学院附属邵逸夫医院招聘派遣岗位21人模拟试卷及答案详解(各地真题)
- 文秘业务考试题库及答案
- 分包单位与班组签订合同
- DZ∕T 0215-2020 矿产地质勘查规范 煤(正式版)
- 2024年初中升学考试九年级数学专题复习新课标要求-中考33讲
- (高清版)DZT 0289-2015 区域生态地球化学评价规范
- 冲压车间给员工培训课件
- 八年级上册数学课件综合与实践《哪个城市夏天更热》北师大版
- 过敏性鼻炎的症状和治疗方法
- 消防喷淋系统安装检验批质量验收记录(含内容)
- 社会保障学第一章
- 危险货物装载与卸载操作规程
- 《映山红》PPT课件(安徽省市级优课)-五年级音乐课件
评论
0/150
提交评论