xx年六年级下册数学1-5单元导学案_第1页
xx年六年级下册数学1-5单元导学案_第2页
xx年六年级下册数学1-5单元导学案_第3页
xx年六年级下册数学1-5单元导学案_第4页
xx年六年级下册数学1-5单元导学案_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 / 36 XX 年六年级下册数学 1-5 单元导学案 本资料为 WoRD 文档,请点击下载地址下载全文下载地址 成正比例的量导学案 一、学习目标 1使学生理解正比例的意义 2能根据正比例的意义判断两种量是不是成正比例 3培养学生的抽象概括能力和分析判断能力 教学重点 使学生理解正比例的意义 教学难点 引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念 二、预习学案 口答(课件演示:成正比例的 量) 1已知路程和时间,怎样求速度? 2已知总价和数量,怎样求单价? 3已知工作总量和工作时间,怎样求工作效率? 三、导学案 这些都是我们已经学过的常见的数量关系这节课,我们继续研究这些数量关系中的一些特征 1.教学例 1(课件演示:成正比例的量) 2 / 36 ( 1)问:大家看到例 1 中的一排杯子,是什么形状的?杯子的高度是相等的,里面装着一些水,经过测量统计出了一个表格,那位同学说说这个表格的意思? ( 2)表中有哪几种量是已知量?我们刚才说当水装到 2 厘米时,体积为 50 立方 厘米;当水装到 4 厘米时,体积为 100立方厘米 这说明水的高度这种量变化了,体积这种量怎么样了 ?(也变化了 ) ( 3)像这样一种量变化另一重量也随着变化,我们就说这两种量是两种相关联的量。 ( 4)大家观察例 1 中的数据,水的体积是怎样随着高度变化的? ( 5)我们看这个表格(投影例 1 表格),从左往右看当水的高度到 6厘米的时候体积是多少?这个时候水的高度和体积分别是 2厘米高度时的多少倍?高是多少倍?体积呢?我们从右往左看,又发现了什么呢? ( 6)大家再把表格填写完整,根据我们所学的圆柱的体积公式,完成这个表 格。大家观察一下结果有什么特点? ( 7)实际上这个底面积又相当于圆柱体积和圆柱高的什么?(比值)那么我们可以看到例 1 中水的体积和水的高之比的比值,即底面积是一样的,是相等的 . ( 8)哪位同学能把刚才所观察到的小结一下?水的高度和体积是怎样变化的?变化的时候有什么规律? 3 / 36 2.继续学习补充例题 ( 1)投影出示例题 一列火车 1 小时行驶 90千米, 2 小时行驶 180 千米, 3小时行驶 270 千米, 4 小时行驶 360 千米, 5 小时行驶 450千米, 6 小时行驶 540千米, 7 小时行驶 630千米, 8 小时行驶 720千米 出示下表,并根据上述内容填表 一列火车行驶的时间和路程 时间(时) 12345678 路程(千米) 90180270360450540630720 ( 2)思考:在填表过程中,你发现了什么? ( a)表中有哪两种两种量相关联的?(时间和路程) ( b)当时间是 1 小时,路程则是 90千米, 时间是 2 小时,路程是 180千米 时间变化,路程也随着变化 时间扩大,路程随着扩大;时间缩小,路程也随着缩小 教师说明:像这样,时间变化,路程也随着变化 ,我们就说,时间和路程是两种相关联的量 教师板书:两种相关联的量 ( c)请每位同学先取一组相对应的数据,然后计算出路程与时间的比的比值 教师板书: 90: 1=90180: 2=90270: 3=90 4 / 36 ( d)教师提问:根据计算,你发现了什么? 教师说明:相对应的两个数的比的比值都一样或固定不变,在数学上叫做 “ 一定 ” 教师板书:相对应的两个数的比值一定 ( 3)教师小结 刚才同学们通过填表、交流,我们知道时间和路程是两种相关联的量,路程随着时间的变化而变化时间扩大,路程随着扩大;时间缩小,路程也随着缩小它们扩大、缩小的规律是:路程和时间的比的比值总是一定的即路程:时间 =速度,速度都是(一定) 90千米 /小时。 3.教学例 2(继续演示课件:成正比例的量) 教师提问,指名回答。 ( 1)问:大家能看懂这个图吗?纵向的轴表示什么?横向的呢?哪里表示的是实验结果?也就是我们例 1 中的底面积? ( 2)从图中你发现什么? ( 3)表示水的高度在 5 厘米的地方是哪儿 ?那么相对应的当水的高度在 5 厘米的时候,在纵轴上表示体积的点在哪儿? ( 4)看例 2 题目的要求,如高度是 7 厘米体积 是多少?要怎末才能不通过计算得出体积呢?要先找到什么 ( 5)我们已经图上找到了这个点,那么这个点是多少呢?你是怎么知道的。 5 / 36 ( 6)刚才是从已知的高求体积,如果反过来已知体积求高呢? 4小结 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系 板书课题:成正比例的量 四 .课堂检测 ( 1)教材 “ 做一做 ” ( 2)判断下列每题中两种量是不是成正比例,并说明理由。 1苹果的单价一定,购 买苹果的数量和总价 2轮船行驶的速度一定,行驶的路程和时间 3每小时织布米数一定,织布总米数和时间 4小新跳高的高度和他的身高 五、课后作业 思考:正方形的边长和周长成正比例吗?为什么? 正方形的边长和面积成正比例吗?为什么? 做练习 7 第一题 六、板书设计 成比例的量 90: 1=90180: 2=90270: 3=90 6 / 36 路程:时间 =速度(一定) y: x=k(一定) 七、反思 第四课时成反比例的量导学案 一学习目标 1理 解反比例的意义 2能根据反比例的意义,正确判断两种量是否成反比例 3培养学生的抽象概括能力和判断推理能力 教学重点 引导学生理解反比例的意义 教学难点 利用反比例的意义,正确判断两种量是否成反比例 二、预习学案(演示课件:成反比例的量) 1下表中的两种量是不是成正比例?为什么? 购买练习的本数(本) 12469 总价(元) 2回忆:成正比例的量有什么特征。 三、导学案 (一)引入新课 我们已经学习了常见数量关系中成正比例关系的 量的7 / 36 特征这节课我们继续研究常见的数量关系中的另外一种特征 成反比例的量 教师板书:成反比例的量 (二)教学例 3 1投影出例 3 表格与例 1 表格。大家观察以下例 3 与例 1有什么不同? 2那么这里相关联的两个量是什么? 3根据记录的数据,你能发现这两个相关联的量有什么特点? 4表中每两个相对应的数的乘积各是多少?这个度 300 实际上是什么呢?那么积都是 300,是一定的,就说明什么是一定的呢? 5这个关系式该怎样写?指明学生回答,确认并板书:水的高度地面积 = 圆柱体积(一定) 6哪位同学能小结一下例 1 中两个相关联的量,水的高度和底面积之间的关系有什么 特点? 三,教学自编例题 1投影出示例题。加工一批零件 ,每小时加工的个数和所需的时间如下表。 每小时加工个数 6030XX12 8 / 36 加工时间(小时) 510152025 2要求学生看题目,思考以下问题。(投影出问题) ( 1)哪两个两量是相关联的? ( 2)由上表可以发现什么特征? ( 3)这两个相关联的量之间关系有什么特征? ( 4)写成关系式是什么? (指名学生回答后,教师小结:每小时加工的个数与加工 的时间成反方向变化,即每小 时加工的个数越多,加工越少,反之亦然。两个相关连的量每组对应得数字成绩一定 实际为零件总个数一定。写成关系式为:每小时加工个数 加工时间零件总个数,(一 定) 3小结反比例的意义和特征。 ( 1)比较两个例题他们有什么共同点?指名学生回答后小结: A,都有两种相关联的 量。 B,如果其中一种量扩大(或缩小)几倍,另一种量也随着缩小(或扩大)几倍; c, 两个量的乘积一定。 ( 2)那么我们就说这两个量成反比例。哪位同学能把反比例关系和成反比例的量的 定义试着概括以下? (指名说,教师板书)。 9 / 36 ( 3)如果两种量成反比例关系,那么这两种量中相对应的积一定。如果用字母 X、 y 表示两种相关联的量,用 k 表示它们的乘积(一定),则反比例关系可以概括成什么? 学生口答,教师板书: Xy k(一定) 四课堂检测 1投影出题目。用 600 页纸装订成同样的练习本,每本的页数和装订的本数有什么关 系?请你填写下表。 每页的本数 152025304060 订的装本数 40 2.问:谁能说第一竖栏数据的意思?(指名回答) 3.这 40本是怎样计算出来的?(学生回答,确 认用 60015 ) 4.如果每本是 20 页,你能计算出可以装订多少本这样的练习本吗?如果是 25页呢? 5 在这里,每本的页数和装订的本书成什么比例?它们可以叫做什么?为什么?(指名 回答) 小结:这节课我们学了什么?你有什么收获?怎么判断两个量是成反比例的呢? 谁能说说成正比例的量和成反比两的量有什么异同? 五课后作业 10 / 36 1.判断下列两种量是不是成比例关系?是成什么比例关系? ( 1)小明从家里步行到学校,步行的速度和时间。() ( 2)前进的路程一定,车轮的直径和滚动的转数。() ( 3)化肥 的数量一定,每公顷的施用量和施肥的公顷数。() ( 4)每人的工作效率一定,工作时间和工作量() 2.甲乙两种量,只要它们相对应的数的积一定,这两个量一定成反比例,对吗? 举例说明。 六板书设计 成反比例的量 圆柱体积:圆柱高底面积(一定) 水高 底面积水的体积(一定) 定义:两种相关联的量,如果其中一种量扩大(或缩小)几倍,另一种量也随着缩小 (或扩大)几倍,这两种量叫做成反比例的量,它们之间的关系叫做反比例关系。两种 量成反比例关系,那么,这两种量中相对应的两个数的积一定。 Xy k(一定) 七反思 11 / 36 第五课时比例尺导学案 一学习目标 1使学生理解比例尺的意义并能正确地求出平面图的比例尺 2使学生能够应用比例知识,根据比例尺求图上距离或实际距离 教学重点 理解比例尺的意义,能根据比例尺正确求出图上距离或实际距离 教学难点 设未知数时长度单位的使用 二、预习学案 (一)填空 1 千米( )米 1 分米()厘米 1 米( )分米 1 厘米( )毫米 30米( )厘米 300厘米( )分米 15千米( )厘米 40毫米( )厘米 (二)解比例 10: X=1: 500000 三、导学案 谈话导入:(出示准备好的地图、平面图)同学们请看,12 / 36 这些分别是祖国地图、我省地图在绘制这些地图和平面图的时候,都需要把实际的距离按一定的比例缩小,再画在图纸上有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在图纸上不管是哪种情况,都需要确定图上距离和实际距离的比今天我们就来学习这方面的知识-比例尺 板书课题:比例尺 (一)通过观察教材 48页图 1.揭示比例尺的意义 教师说明:因为在绘制地图和其他平面图时,经常要用到 “ 图上距离和实际距离的比 ” ,所以就给它起了个新的名字 -比例尺(教师在 “ 图上距离 实际距离 ” 的后面板书:比例尺)有时图上距离和实际距离的比也可以写成分数形式 有时候地图上也用线段比例尺如:教材 48 页的地图上:就是表示地图上 1 厘米的距离相当地面上 50千米。 板书: 图上距离是比的前项,实际距离是比的后项,比例尺是图上距离比实际距离得到的最简单的整数比 再生产中,有时由于机器零件比较小,需要把距离扩大一 定的倍数以后,再画在图纸上,例教材 49 页图。你知道 2: 1表示什么吗? 13 / 36 2.教师强调: ( 1)比例尺与一般的尺不同,它是一个比,不应带有计量单位 ( 2)求比例尺时,前、后项的长度单位一定要化成同级单位 ( 3)比例尺的前项,一般应化简成 “1” 如果写成分数的形式,分子也应化简成 “1” (二) 1.教学例 1(课件演示:比例尺) 例 1把上页的线段比例尺改为竖直比例尺 . 图上距离:实际距离 =1cm: 50km = = 学生自己完成教师提示注意单位名称的统一。 2.教材 49页做 一做 (三 )、课堂小结 这节课我们学习了比例尺,知道了图上距离与实际距离的比叫做这幅图的比例尺并能根据比例尺求出图上距离或实际距离应注意的是,在计算中,图上距离与实际距离的单位必须是相同的 四、课堂检测 1.同学们拿出自己的地图说说什么叫比例尺?它表示什么14 / 36 意思? 2.是什么比例尺?表示什么意思? 五、课后作业 教材练习八的题 六、板书设计 比例尺的意义 图上距离:实际距离 =1cm: 50km = = 七反思 第六课时用比例尺计算及画平面图导学案 一 、学习目标 1.进一步学习运用比例尺的知识计算图上距离或是实际距离,灵活的运用比例尺绘制简单的平面图。 2.充分发挥学生的主动性和动手能力。 3.巩固比例尺知识,达到学以致用,并且渗透一些德育教育。 二、预习学案 1.什么叫做比例的性质? 2.求下面各比例中的未知项 X。 1: 450 12: XX:40 5:811:X 25:225 15 / 36 3.什么叫做比例? 三、导学案 1.教学例 2 ( 1)让学生读题并思考问题:题目已知什么?求什么? ( 2)根据比例尺的定义写出比例尺的关系式,是什么? ( 3)已知比例和图上距离,那么我们先把已知的写上,比例是多少?表示什么意思?图上距离是多少? ( 4)那么现在这个比例,有三项是已知的,求其中一个未知项,这是我们学过的什么啊? ( 5)在解比例前对于这个未知项,我们该怎么处理? ( 6)按照比例的基本性质,这个比例怎么解? ( 7)这里的 500000是什么单位?那么是多少千米呢? ( 8)我们刚才用的是设未知数,根据比例的基本性质解比例的方法求出实际距离,你还能用其他方法来求出答案吗?你能想出几种方法呢? 1.教学例 3。 ( 1)要在这张纸上原原本本地画一个 长 80m,宽 60m 的操场的平面图,可能吗?应该怎么做呢?首先应该注意什么? ( 2)那么这个比例尺怎么来确定呢?用多少合适呢? ( 3)比例尺的确定应该要根据实际情况,比如说根据要画的实际距离大小及我们画平面图的纸的大小的限制。我们如果用 1: 100 的比例尺的话,大家算算操场的长和宽的图上16 / 36 距离相应是多少?我们这纸能画下吗? ( 4)那说明我们还得把比例尺缩小一些还是放大一些?用多少呢? ( 5)如果用 1: 1000,操场的长图上距离是多少?宽呢 ?怎么算? ( 6)大家求出了操场长和宽在图上分别为 8cm 和 6cm, 那么现在大家就把这个平面图在纸上画出来,表明长和宽,以及比例尺。 ( 7)画完后,要求学生把数值比例尺改写成线段比例尺,数值比例尺也一并表在图上,教师行间巡视辅导。指名学生说说自己的线段比例尺的意思,其他同学评判法。 四 .课堂检测 1.做 “ 做一做 ” 第一题。先指名学生说明线段比例尺的含义,然后指名学生板演,其他学生写在练习本上,集体订正。 2.做 “ 做一做 ” 第二题。指名学生说说已知什么,需要做什么工作。 五、课后作业 一 .填空。 1.在一张精密零件图纸上(比例尺为 5: 1),量的零件长 40毫米,这个零 件实际长() . 2.把一个圆形草坪画在比例尺为 1: 2000的平面图上,半径为 3 厘米,这个圆形草坪的实际面积是()平方米。 17 / 36 米的地图商量的两地之间的距离是 9 厘米,那么在比例尺是1: 300000 的地图上,两地的图上距离是 () 六、板书设计 用比例尺计算及画平面图 比例尺 =图上距离:实际距离 练习:一座地面是长方形的厂房,长 45米,宽 25 米。把它画在比例尺是的设计图上,长 .宽各是多少厘米? 七、反思 第七课时用比例解决问题导学案 一、学习目标 1、掌握用正比例知识解答含有正比例关系问题 的步骤和方法。 2、使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解。 3、发展学生探究解决问题策略的能力,帮助其构建相应的知识结构。 【教学重点】 掌握用正比例知识解答含有正比例关系问题的步骤和方法。 【教学难点】 理解 “ 用比例解决问题 ” 的结构特点与正比例的意义互为对应的联系,从而构建知识结构。 二、预习学案 18 / 36 激发兴趣:同学们知道校园里最高的树是那一棵吗?老师很想知道这棵树的高度大概有多少米,你会用什么办法来测量呢?(让学生说一说自己的想法) 其实我们有一种既科学又 方便的测量方法,但需要同学们掌握好这节课的知识才能正确地测量出这棵树的高度,今天我们就一起来研究 用比例解决问题。(板书课题:用比例解决问题) 二、导学案 (一)回顾旧知。 1、出示例 5 情景图,说一说图意,了解数学事例。 图略 2、你能算出李奶奶家上个月的水费是多少钱吗? 3、让学生自己解答,然后交流解答方法。 4、教师引导:这个问题除了用算术方法解答外,还可以用比例的知识来解答,下面我们继续探究怎样用比例解决问题。 (二)探究解法,感知策略 1、梳理两种相关联的量。 师:用比例解决问 题,必须知道题中有哪两种相关联的量,你们能说一说题中有哪两种相关联的量吗?(板书:相关联的两种量:水费、用水吨数) 师:为了区分这两种量,我们可以在原题用符号的方法来划19 / 36 分,比如用水吨数用符号 “” 表示,水费用符号 “” 来表示,也可以用列项摘记的方法来划分(板书学习记录卡中的表格)。 2、探究用比例解题的方法。 发放学习记录卡(每个学习小组一张) 用比例解决问题学习记录卡 ( 1)题中有哪两种相关联的量,它们对应的数据分别是多少?请填写下表(未知的量用 “x” 表示)。 相关联的两种量对应数据 张大妈李奶奶 ( 2)分析判断。 从上表可以知道()一定,所以()和()成()比例。也就是说,两家的()和()的()相等。 ( 3)用比例解答。 如果设李奶奶家上个月的水费是 x 元,请根据表中相对应的数据和判断列出比例式,然后解答。 教师提出小组合作学习的要求: 组长组织,要求每个组员都要发表意见。 记录员负责作学习记录。 分析、判断和解答如果有不同想法可以补充。 20 / 36 (三)展示成果,形成策略 1、指定小组到讲台利用投影仪汇报,预设学生的汇报内容为: 相关联的两种量对应数据 张大 妈李奶奶 水费(元) 用水量(吨) 810 从上表可以知道每吨水的价钱一定,所以水费和用水量成正比例。也就是说,两家的水费和用水量的比值相等。设李奶奶家上个月的水费是 x 元。列出比例是:(或 :8=x:10),比例的解是 x=16。(板书解法 1) 2、生生互动、师生互动,其它同学结合小组的汇报提出自己的疑问或是补充意见。预设学生可能质疑或补充: ( 1)和分别表示什么?(水费单价) ( 2)如果列出的比例是可以吗?为什么?(可以,因为和都表示 1 元可以用水多少吨,是一定的,板书解法 2) ( 3)如果列出比例式 是可以吗?为什么?(不可以,比例中两个量的比值不是一定的) 预设之外的对策:如果没有学生提出以上问题,教师可以课前做好准备,出示不同的比例式让学生讨论其是否可行。 (四)检验反思,提炼策略 师:这个问题我们用比例的知识解决了,你有什么方法检验21 / 36 自己的解答是正确的呢? 启发学生自主选择检验方法。如:将结果代入原题、运用比例的基本性质、用算术方法或一般方程方法解答来检验等。 师:反思刚才的学习过程,我们一起来归纳解决问题的策略(步骤)好吗。? 小结:得出用比例解决问题的 “ 五步曲 ” :一梳(梳理相关联的两 种量)、二判(判断相关联的两种量成什么比例)、三列(设未知 x,根据判断列出比例)、四解(解比例)、五检(用自己熟练的方法来检验)。 五、课堂检测 (一)测评练习 1、按要求做题。 小明买了 4支圆珠笔用了 6元。小刚想买 3支同样的圆珠笔,要用多少钱? ( 1)题中的()一定,所以()和()成()比例。也就是说两人的()和()的比值是相等的。 ( 2)设要用 x 元。列比例是()。 2、用比例解答下面各题。 ( 1)甲乙两地之间的公路长 350 千米,一辆汽车从甲地开往乙地, 2 小时行驶了 140 千米。照这样的速度 ,这辆汽车从甲地开往乙地一共需要行驶多少小时? ( 2)小兰的身高,她的影子长。如果同一时间、同一地点22 / 36 测到一棵树的影子长 4m,这棵树有多高? 六、课后作业 1、先补充问题再用比例解答。 王师傅 4小时加工了 200个零件,照这样计算, _? 2、一条绳子长 126 米,剪下 9 米共做了 5 条跳绳。剩下的绳子还可以做多少条这样的跳绳? 提高练习第 1 题可以补充 “ 小时可以加工多少个零件 ”或 “ 要加工 个零件需要多少小时 ” ,提高学生对数学知识的应用能力。 六、板书设计 用比例解决问题 相关联 的两种量对应数据 张大妈李奶奶 水费(元) 用水量(吨) 810 水费和用水量成正比例,即两家的水费和用水量的比值相等。 解:设李奶奶家上个月的水费是 x 元。 8X 10 X X 16 23 / 36 答语。 六、反思 第八课时图形的放大与缩小导学案 一、学习目标 1.要了解图形放大与缩小时的特征,以及掌握利用比例的知识将图形放大与缩小的方法。 2.动手操作实践活动让学生观察一些现实中存在的按照比例对图形进行放大与缩小的实例从而体会图形放大缩小的实际意义并观察得出图形放大缩小的一些变 化特征。 3.通过鼓励学生实际操作将一些简单图形放大缩小从而掌握其中的方法,体现主体参与、自主探索、合作交流、指导引探的教学理念。 二、预习学案 1.什么叫做比例?比例的基本性质是什么? 2.用学过的知识解答。 ( 1)养殖场一个养殖房里白兔和黑兔只数的比是 7: 9,白兔有 35只,那么黑兔有多少只? ( 2)班级图书角里科技书与文艺书本数的比是 3: 5,文艺书 45本,那么科技书有多少本? 三、导学案 (一)联系实际导入新课。 24 / 36 ( 1)分别投影出经过编号的系列现实中涉及图形放大缩小的实例图片。提问:这 些现象你见过吗?除了这些现象你还见过那些?指名多名学生说说自己见过的,鼓励学生说说展示的现象之外的例子。 ( 2)提问:这些实例中哪些是图形缩小的,哪些是图形放大的,大家按照编号分分类。 ( 3)大家都喜欢玩电脑,很多同学会在电脑上放电影,那么你会把现在屏幕上这个放电影的窗口放大一些吗? ( 4)这节课我们就来学习一下怎样把一些简单的图形应用比例的知识按照一定比例放大和缩小。 (二)演示观察,体会图形放大缩小的基本特征。 ( 1)我们来看一个把图片放大缩小的例子。再有标尺的 Word文档中插入两张一样大的长 方形图片,提问它们的长和宽分别是多少? ( 2)现在我们把第 2 张图片分别沿着长和宽方向将他的长和宽延长一倍长,长和宽分别是多少?大家卡这两幅图片现在有什么异同呢? ( 3)那么两幅图的长于宽的比分别是多少?两幅图的面积呢?长之间的比,宽之间的比,面积之间的比成比例吗?我们是按照什么比例放大图形的呢? ( 4)哪位同学能小结一下图形按照一定比例放大后的特征? (三)教学例 4,掌握将简单几何图形放大缩小的方法。 25 / 36 ( 1)题目要求我们按照 2: 1 的要求放大图形,是什么意思? ( 2)我们先看第一个图形,大家观察这 个图形是什么形状?你怎么知道的? ( 3)按照 2: 1 放大图形该怎么办呢?现在正方形的边长是三个格,要放大到他的两倍那是几格? ( 4)我们再看这个三角形,大家观察一下应该从哪儿着手放大比较方便? ( 5)我们放大了直角边,那么三角形的斜边是不是也正好是原来斜边的 2 倍呢?我们来验证一下,大家量量课本上放大后的三角形的斜边和原来图形的斜边比较是不是原来的两倍? ( 6)你会放大图形了吗?那么剩下一个长方形,大家按照我们刚才学过的方法把它放大,画在纸上。 ( 7)大家观察一下,放大后的图形与原来的图形有什么相同? 有什么不同? (8)如果把这些图形按照 1:3 缩小,这是什么意思?该怎么做? ( 9)大家在准备好的小方格纸上画一画,然后观察一下缩小后的图形与原来图形的异同。 (10)这样我们就可以看出图形的各边按相同的比放大或缩小后,图形形状怎样?(不变),相对应的各部分的比呢?(相等) 26 / 36 (四)、课堂小结 这节课你有什么收获?图形放大缩小的特征是什么?你会按照一定比例在放大和缩小简单的图形吗? 四、课堂检测 1、要求学生做教材练习九第 1 题。指名学生回答,并说说理由。 2、做教材上的做一做。学生独立完成画在纸 上,教师行间巡视,指名学生说说题意及做题的步骤。 五、课后作业 做练习九第 2 题。学生独立画图,第 3 小题的答案,注意指出其实变化后的三个图形形状不变。 六、板书设计 按 2: 1 放大,就是各边放大到原来的 2 倍, 七、反思 第四单元 第一课时统计与可能性导学案 一、学习目标 1、掌握新学的统计初步知识 2、能够绘制简单的统计图表 3、能够根据数据做出简单的判断与预测 27 / 36 重点:绘制简单的统计图表 难点:根据数据做出简单的判断与预测 二、复习 1、看教材 109-110页。 2、回顾 所学的统计知识。已经学习了哪些常用的统计图?它们各有什么优点? 三、导学点拨: 学习例 1. 分小组讨论一下几个问题: 1、根据教材上的统计图表,你得到了哪些信息? 2、除了通过问卷调查收集数据外,还可以通过什么手段收集数据。 3、做一项调查:统计工作的主要步骤是什么? 四、课堂检测: 1、常用的统计图有()()和()。 2、从折线统计图中不但(),而且()。 3、()统计图可以清楚的表示出部分与总数之间的关系。 五、作业: 练习二十二第 1、 2 题。 板书:统计与可能性 常用 的统计图有()()和() 例 1、根据统计表,你得到了哪些信息 ? 28 / 36 课后反思 : 第二课时统计与可能性导学案 一、学习目标: 1、能够绘制简单的统计图表。 2、会求一些简单事件的可能性。 3、能够解决一些计算平均数的实际问题。 重点:绘制简单的统计图表。 难点:解决一些计算平均数的实际问题。 二、预习: 看教材 111页例 2,回顾以前学过的关于平均数、中位数、众数和可能性等。 三、导学点拨: 学习例 2. 看教材后,分组讨论如下几个问题: 1、在上面两组数据中,平均数、中位数 和众数各是多少? 2、不用计算,能否发现上面两组数据的平均数、中位数和众数之间的大小关系。 3、用什么统计量表示上面两组数据的一般水平比较合适? 四、课堂检测: 1、王师傅某一周生产零件数是 44、 44、 48、 48、 48、 50、54,这组数据的中位数是(),众数是(),平均数是()。 29 / 36 2、暗箱里有 5 个红球, 8 个黄球,任意摸出一个球,摸到红球的可能性占(),摸到黄球的可能性占()。 3、杏山乡要反映各种收入占总收入的百分比,应选用()统计图合适。 五、作业:练习二十二 3、 4、 5 题。 六、板书:统 计与可能性 想:中位数、平均数、众数 例 2:用什么统计量表示上面两组数据的 一般水平比较合适? 课后反思 : 第三课时统计与可能性导学案 一教学目标: 1、能根据具体的统计图进行分析,得出正确的结论。 能根据具体统计图的对比找出优缺点。 重点:理解扇形统计图和折线统计图所表示的意义。 难点:会分析和比较统计图,得出结论。 二 .预习学案 :预习课本 111 页例 3,发表你的看法。并与同学小组交流。 三 .导学案 :看课本 112页扇形统计图,完成下列问题: 1、哪种血型的人数最多? 2、哪 两种血型的人数差不多? 30 / 36 3、若该班有 50人,各种血型各有多少人? 四、课堂检测: 六( 1)班要举办联欢会,通过转盘决定每个人表演节目的类型。按下列要求设计一个转盘。 ( 1)设唱歌、舞蹈和朗诵 3 种表演节目。 ( 2)指针停在舞蹈区域的可能性是 1/8. ( 3)表演朗诵的可能性是表演舞蹈的 2 倍。 五、布置作业 113页 4、 5、 6 六、板书设计 : 课后反思 : 六年级数学下册第五单元教学计划 一、教学内容 :抽屉原理。 二、教学目标 1经历 “ 抽屉原理 ” 的探究过程,初步了解 “ 抽屉原理 ” ,会用 “ 抽屉原理 ” 解决简单的实际问题。 2通过 “ 抽屉原理 ” 的灵活应用感受数学的魅力。 三、具体编排 1例 1 及 “ 做一做 ” 。 例 1 借助把 4 枝铅笔放进 3 个文具盒中,不管怎么放,总有一个文具盒里至少放进 2 枝铅笔的情境,介绍了一类较简单的 “ 抽屉问题 ” 。为解释这一现象,教材呈现了两种思考方31 / 36 法: “ 枚举法 “ 与 “ 反证法 ” 或 “ 假设法 ” 。 教学时,教师可适时引导学生对枚举法和假设法进行比较,并通过逐步类推,使学生逐步理解 “ 抽屉问题 ” 的 “ 一般化模型 ” 。 “ 做一做 ” 中安排了一个 “ 鸽巢问题 ” ,学生可利用例题中的方法迁移 类推。 2例 2 及 “ 做一做 ” 。 本例介绍了另一种类型的 “ 抽屉问题 ” ,即 “ 把多于个的物体任意分放进个空抽屉(是正整数),那么一定有一个抽屉中放进了至少( +1)个物体。 ” 教材提供了把 5 本书放进 2个抽屉,不管怎么放,总有一个抽屉里至少放 3 本书的情境。仍用枚举法及假设法探究该问题,并用有余数除法的形式52=21 表达出假设法的思路,并在此基础上,让学生类推解决 “ 把 7 本书、 9 本书放进 2 个抽屉的问题 ” 。 教学时,引导学生理解假设法最核心的思路是把书尽量多地“ 平均分 ” 给各个抽屉。 “ 做一做 ” 中 “ 抽屉数 ” 变成了 3,要求学生在例 2 思考方法的基础上进行迁移类推。 3例 3。 例 3 是 “ 抽屉原理 ” 的具体应用,也是运用 “ 抽屉原理 ” 进行逆向思维的一个典型例子。 教学时,先引导学生思考这个问题与 “ 抽屉原理 ” 有怎样的32 / 36 联系,可先让学生自由猜测、再验证。逐步将 “ 摸球问题 ”与 “ 抽屉问题 ” 联系起来,找出这里的 “ 抽屉 ” 是什么,“ 抽屉 ” 有几个,再应用前面所学的 “ 抽屉原理 ” 进行反向推理。 四、教学建议 1应让学生初步经历 “ 数学证明 ” 的过程。 在小学阶段,虽然并不需要学生对涉及到 “ 抽屉原理 ” 的相关现象给出严格的、形式化的证明,但仍 可引导学生用直观的方式进行 “ 就事论事 ” 式的解释。教学时可以鼓励学生借助学具、实物操作或画草图的方式进行 “ 说理 ” 。通过这样的方式,有助于逐步提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。 2应有意识地培养学生的 “ 模型 ” 思想。 “ 抽屉问题 ” 的变式很多,应用更具灵活性。但能否将这个具体问题和 “ 抽屉问题 ” 联系起来,能否找到问题中的具体情境和 “ 抽屉问题 ” 的 “ 一般化模型 ” 之间的内在关系是影响能否解决该问题的关键。教学时,要引导学生先判断某个问题是否属于用 “ 抽屉原理 ” 可以解决的范畴,如果可以,再思考如何 寻找隐藏在其背后的 “ 抽屉问题 ” 的一般模型。 3要适当把握教学要求。 “ 抽屉原理 ” 的应用广泛且灵活多变,因此,用 “ 抽屉原33 / 36 理 ” 来解决实际问题时,有时要找到实际问题与 “ 抽屉问题 ” 之间的联系并不容易。因此,教学时,不必过于追求学生 “ 说理 ” 的严密性,只要能结合具体问题把大致意思说出来就可以了,更要允许学生借助实物操作等直观方式进行猜测、验证。 第一课时抽屉原理导学案 一 导学目标: 1、知识与技能

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论