土木工程专业英语9-20.doc_第1页
土木工程专业英语9-20.doc_第2页
土木工程专业英语9-20.doc_第3页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第九课 海港和海上工程 海港和海上的建筑工作比城市设计有更多不平常的问题和富有挑战性,连续宽广的大海是自然界最不知疲劳,最有气势和具有强大的自然力,为工程师提供一个对手去发现在海洋中的建筑的任何弱点或缺点,而却防止它们。 海事工程的目的。这些广泛进行的工程主要目的有两类:水面运输,围海造陆或河道管理。在第一批进行的工程直接用于为水陆交通工具中的货物和乘客转移提安全而经济的设施。渔港的出现分配着大海的资源。为轮船和水型飞机提供了安全岛,是船舶的停泊处或是私人水飞机的降落处。围海造陆与河道管理是致力于防止海洋对陆地侵蚀恢复和改造海洋所占用土地以及维护江河入海口以作为内陆径流排放的有效措施这样的工程。在很多地方,由于没有连续维护,大浪和暴雨一起将导致居民区的洪灾时常发生。 土木工程技术所有的工程都有很多广泛的相同。实际上要认出在同一时期经常出现相似的工程的不同特征。例如:主要河道清淤至足够的深度的工作即有利于通航,同时也能增加上游洪水的泄洪能力。 水力模型。 海边土建工程的计划取决于运输,围海造陆,河道管理是否促进发展技术模型的研究,曾经认为科技是不必要的,这些研究表明必不可少的第一步是对任何港口或沿海地区进行再开发,去做有用的即使是非常小的更改或增加地区,海港,河口被做成缩尺模型。所以水不以被引导如同潮汐和其他的潮流一样,在同一方向以相同速率处在同一个地方。各种设备一般都是电子控制,被发展以海浪和潮汐为动力用来生产。 这个试验的可贵之处在于引出了在比例上减少被发现相当于鲜少模型尺寸的比例。这样以来,苏格兰的Clyde Estuary工程的巨大模型在14分钟的潮汐循环中或大约50次的实际潮汐次数。 三年潮汐的影响使海港的数据图表也随着更改,如果在时间为三周的试验中对模型的研究,那么任何其他的潮流在非预期内的冲刷或淤泥可能被查出来。这种价值关系对改变位置的防堤提供保护同样可以被研究。利用波浪生成设备,发现次要的或不利的影响。 在受保护的区域,波浪因带来混乱而不受欢迎,这是可以预料甚至还是抢先的。 天然港口和人造港口: 在世界的海岸线中确实存在着偏见,自然界为人类提供的港湾仅仅等待使用。例如纽约湾,探险者Giouvanni da Verrazano 称纽约是庇护船只“最满意的地方”,像进口,港湾,出可能需要先进的挖泥机,当然还必须修建港口结构,但最主要的是这些都保持着自然形成状态,而且它们对世界上许多大城市来说,其存在非常重要。因为像这些天然的海港并不是经常需要一般的家们设计的人造海港那样的港口设备。在一个人工海港的创建中,最主要的结构设施是防浪堤,有时候也叫防波堤,或者掘地道,其主要作用是保持近海岸的海水平静,人工海港的位置当然应该选择在有潜能的海岸的突出部位;也可以偏于稍微缩进一些。所以,常常出于经济性或都战略性考虑,通常会沿着不太隐蔽的海岸线的陆地上修建防浪堤围住一些区域,建造纯粹的港口,只留很窄通道作为船只的进出口。 海港的主要工作 远古时代,从事海港的工作是改善改进天然海港和人造港口的结构。还没有确定性的证据记载第一座人造海港构造的日期和地点,但是人们都知道,公元前13世纪Phoencians在Sidon和Tyre就修建了港口。 目前的工程师们很少懂得或者思考关于对他们自己修建的港口进行保护甚至应用。证据是我们所看到的Mediterranean四周曾经很繁荣的港口,如今不仅仅成为了静静的废墟,取而代之的是那些随时地跟进的繁殖力极强的冲积陆地所占领,而且远远望去那海的景象很难想象得出那种场景能够适于远航轮船的定锚。 Asia Minor的在Aegean陆地上的港口如Ephesus, Prience和Miletus,像这种类型的港口如今都消失了,每一种这样的情景都破坏了美丽如画的Meander河(现在叫Menderes河),这对于那些努力在河流出海处相邻的高地上创建新的陆地的人们来说不失为一件惬意的事情。 在朝向Cyprus岛的一边,保留着一座古老的防波堤,建成用来保护泊船点的。它至今可见。但是在防波堤与海岸线之间的被围区域意识已经是很窄了。在这个事例中,淤泥沉积不仅是因为临近河流的作用,而且沿岸流也起了部分作用,沿岸流是一种平行于海岸的水流,其作用是使东西海岸广阔的海岸得以产生和存在。 许多古代的港口建筑已经没有踪迹可寻了,但是在他们时代的那些知识甚至技术说明都被记载下来而流传至今,这些说明和遗址都被保存下来,古时候的从事海港工作的土木工程师的一些图纸也被保存下来。 他们最开始考虑的是为了给那些脆弱的船提供保护,使其不受气候影响。但更重要的作用是那些建筑物的贡献,如防波堤,通道及维护结构。大量的廉价劳动力和用天然石材为主要材料。用这种方法建成之后看起来如同更快来低价的现代建筑。 不过它并不带着刻意的目的去不断修建的古代工程师的功劳。提供那些他们以前用过的材料和他们已经实现的目的。他们可能会做得更小。此外,由于他们没有那么快速的步伐去反战更好的船运或陆路运输,他们还没有被荒废的阴影扰乱。在20世纪,港口工程师不是想要建造永恒的结构,而是要注意避免强加于子孙后代也许因为坚固耐用反而变成负担的结构。 现代在过渡耐用和脆弱危险的材料用于那些等级非凡的古老海事建筑,他们强调增加美化,如雕像和凯旋门。 横切技术的实践包括在隧道和防护堤中的罗马半圆式半圆拱和分布在那些允许海水进出的以便于清洗海港中的设备的地方。罗马人常采用村庄和经常借助围堰建筑加固他们的建筑,以至于他们能运用阿基米德螺旋和水轮。这些实践能使他们在干旱区展开很多基础工作,和利用它们非常著名的波特兰水泥,使他们的建筑无非常耐用。波特兰水泥也是有他们的前辈石灰水泥发展而成的。 第十课 大坝 大坝是横跨小溪,河流或河口用于蓄水的建筑。他的目的是为了提供人类用水,灌溉和工业用水;削减洪峰,增加蓄水发电能力;或者增加河道深度以有利于航运。还有一个附带效果就是能提供游乐的湖泊。 大坝的一些辅助功能包括溢洪道,水闸,或利用阀门控制从大坝中排出过剩的水到下游;吸水结构引水到发电站或运河,隧道,或渠道用于更远距离的使用。供应从蓄水池中抽出泥沙;同时还要允许轮船和鱼类通过大坝。大坝因此在控制蓄水目标体系中成了中心建筑。在不发达国家中大坝更具特殊重要性,在一个小国家可以从一个简单的大坝中获得巨大的农业和工业利益。 大坝从外形和建筑材料可以分成几个不同的等级,建哪一类型的大坝的结论很大程度要根据山谷的基础条件和可以使用的建筑材料。基本的所选的材料是混泥土,泥和碎石。大部分大坝在过去建设中采用有接缝的石木术,但是这种做法已完全被废弃了。混泥土大坝的整体形式在侧面上有很多类。根据水压程度利用结构自重或采用横跨山谷由俩边峡谷支撑的水平横拱来抵抗侧向位移。 大坝设计的基本问题 大部分被分为两个基本类型:masony和embankment,M坝是用来在峡谷的峡谷中横跨河流,如在群山中这类坝可能非常高,但所需的总体材料受到限制。E坝用于宽的河流上建一座大坝需要足够多的材料。选择M或E坝和精确地设计都可依靠这一位置的地质情况和构造,大坝的基础和成本因素。 地质的研究和试验,坝址研究包括沉降试验和地层的钻孔测试。用竖井和坑道补充钻孔试验,因为它们的成本必须尽可能地节约。 在竖井的坑道试验中可以测出强度,弹力,渗透系数和地层的压力分布,还必须重视那些更结实的基础中的薄的分离或间隔地区的特性。存在的地下水对大坝的建筑材料的有害的化学溶解必须评定。建筑原料需要试验。如果连续增加高度,基础条件的研究也越来越重要。 模型试验在大坝的结构抗震和水力设计中扮演一个主要角色。结构模型在分析拱形大坝和检验分析压力计算有特殊的用途。各种材料都将被用于模型试验中,在Hoover大坝的一些早期试验,常利用橡胶,这需要在复杂模型中准确复制应力样本,模型要符合使用低弹型材料。 从主观上来看,大坝模型本身就是未来的设计,说明了建成模型用来记录在荷载下的活动,建筑材料所受的拉力,温度和压力改变和基本安装的其他因素,在研究成果下,结构可能出现的,但是它们的价值在于证实了设计的假设,这是重要的。数字电脑已经允许考虑高级的分析方法设计,它处理大量的数据和解答多组包含许多变量的联立方程的能力使得有限元分析是可行的。用这种方法,一个复杂结构被分为许多单独的平衡条件,而且所有拉力都具有兼容性,这样可以对整个结构的压力的分布进行完整地分析。 材料问题大坝的两种基本材料:混凝土和泥域填石在大坝的正确设计中都有一个弱点需要被克服。 混凝土的弱点,混凝土的弱点在于抗拉强度,因为它很容易被拉裂,混凝土大坝因此要被设计承受最小拉应力和利用混凝土大的压应力或尽可能地承受垂直荷载。由于晶体结构对水的吸收,水在空气中的蒸发和从水泥水化过程中产生的高温冷却,混凝土的主要成分-水泥,在凝固和硬化时要收缩。因为大量混凝土用于大坝上,收缩而出现严重裂缝的危险。 大量便利的方法被用于解决这个问题,混凝土常被分层限厚浇筑,裂口被用来散发热量而被最后浇筑。低热水泥也被使用。还有混合特殊添加剂而使散热变得迟缓。在大坝内部混凝土中的水泥要做到安全而量少。也就是能满足强度,其次能抵抗气候和化学侵蚀。能满足用于大石块中的水泥可以减少用量。另外一个好的办法是用级配好的材料,如粉煤灰(研磨后的燃料)作为填料可以减少混凝土的水泥用量。另外就是使用增加添加剂。表面活性剂和加气剂都被允许用于低水灰比的混凝土,用冰代替水的技巧增加了冷却速度。/混合或用循环水通过埋入混凝土中的导管 而用利用直空抽出其表面过剩的水。 土和岩块的弱点。土和岩块不具备混凝土的强度,可渗透性大,抗流水损坏和干扰的能力差,这些缺点可以由低成本和能用合适填入在大坝基础因运动毁坏的地方。假如能得到足够的土用于坝址的合拢在光山区域,它可能比堤坝更需要采石场的岩石和构造岩石。土填当然是最经济的,也常适合用于借土合拢坝址。 土由固体物质,水和空气构成,土受荷而压缩,如出现在大坝建筑,排出水和空气导致增加固体物质间的压力,当有很高的渗透比时,土趋向于产生不同的压力和达到临界状态,这时它的状态如同液体。如果达不到这个条件,通常它的结构会变弱,而且逐步进行计算结构。 地震问题。大部分大坝都建在世界上地震活动地带,包括日本,美国西部,新西兰,喜马拉雅山和中东,在1968年,在HonShu的ToKachi大地震中毁坏了93座大坝,在日本主岛,所有的堤坝高度都相对较小。 尽管针对地震活动分布,强地震运动的量测水坝对这种运动的反应做了大量工作,水坝的地震设计依然不够精确,强的地质运动特征给坝址带来不少预料性。而且不完善的弹力分析和不严格的衰减分析使所有类型的大坝都具有一些自由度,不过,电脑计算和模型试验都得到了相当大的发展,现在还可以计算大坝在任何地质运动下的反应。在Tang-e Sdegman大坝和南非的HendriK Verwoerd大坝上使用过,也可以从理论估计中预先考虑地质活动对堤坝的影响。 第11课 高速公路工程高速公路工程包括高速公路计划.选址.设计和高速公路保养。当一项高速公路工程设计建设或是改造之前,必须大致地计划考虑一下费用问题。作为概要计划的一部分,该地区在可预见的时段内(如20年)的交通流量,以及何种建设才能满足这种需求将是决定因素。为了评估交通需求量,高速公路工程师通过采集分析现有设备提供的物理数据信息包括车流量,分布,现有交通工具的特征以及蕴涵在这些因素中的可以预知的变化。高速公路工程师必须决定新路线建筑最适合的位置.布局以及容量。通常情况下,一条初步的线路或选址和若干备选路线都会被拿来研究。细节方面设计通常在一个更佳的选址确定下来之后才开始。为了选择最佳路线,需要仔细考虑的问题包括:交通需求,(路线)横贯的地带,可通行道路的土地价值以及各种方案的结构开销的预算。在一些大型项目中,利用了航拍技术的摄影测量法被广泛用于显示该地带的特征,这也是一种最经济的方法。在那些小型工程中,地面绘图法已经很完美了。资金方面的考虑决定了一项工程是一次性实施还是是否必须分阶段建设,每阶段建设等资金到位后才开始。在决定最经济的实施方案时,工程师通过分析它的盈利性来定夺的。高速公路,街道(考虑)盈利性的三个优先顺序(依次)为:使用者,所有权上(最)邻近的所有者,大众。使用者通过降低运输费用,提高旅行舒适度,增加安全性,节约时间来提高高速公路利润。他们也获得娱乐的和教育上的好处。所有权毗邻的所有者可以通过更好的路线,提升所有权价值,更加高效的警察机关和消防保护,改善停车环境,为步行者提供更安全的交通环境,当地可通行道路(沿线)的公共设施,(诸如)水管和下水道的使用情况。对通过高速公路建设获得的各种利益的评估通常是困难的,但对一个高速公路工程来讲也是一个最重要的阶段。有一些利益可以被精确计算出,另有一些就具有相当的投机性。因此要使用许多种办法来使(工程)建设(变的)更加经济,并且许多工程上的工作都会牵涉到最佳程序的选择上。环境价值环境因素在高速公路建设中正被越来越重视,也突现出越来越高的重要性。由于环境问题导致工程被搁置甚至取消的事例,不胜枚举。环境方面的研究或调查涉及许多因素,包括噪声的产生,空气污染,对横贯地区的扰乱,对现有房屋以及可能的预备路线的破坏。可通行道路的获得高速公路工程师也必须协助得到用于新高速公路设备的可通行道路。通向市区商业中心的高速公路建设的土地的获得已被证明是非常困难的。公众需要交通工程师和城市规划者,建筑师,社会学家,以及所有对美化城市环境,提升城市功能感兴趣的团体紧密合作以确保在协调好所有主要问题(方面)的利益后再(开始)建贯通首要区域的高速公路。主要问题包括以下几点:(1)高速公路自身的美化问题是否给予了充分的注意?(2)是否为保护城市的自然风光而改变选址?(3)在某些区段需要高架高速公路的有没有一个逻辑上可以替换的降低设计被提出?(4)概略设计对降低由大流量的交通造成的噪音是否有帮助?(5)城市的一些部分是否因为这个提议选址而被独立开来?细节设计高速公路工程的细节设计部分包括用于建设的图纸或者蓝图的准备工作。这些计划展示了诸如选址,道路宽度等此类要素的尺寸,道路的最终剖面图,排水设备的位置和种类,涉及的工程量,包括地下地表的工作。土质研究在做分层开挖的计划时,设计工程师要考虑在开挖过程中遇到的土的种类或者削平工程沿线的高地后如何处理余土才能把它们最佳地填到需要填土的地方,或是用于该工程穿越的其他地势较低地段的筑堤工程。为此,工程师必须分析土质的等级和物理特性,决定如何才能把路堤尽可能的压实,并且计算要完成的土方工程量。电算程序如今常常被用于最后一个阶段的计算。电子设备也加快了许多其他高速公路工程的计算。大功率,(具有)高度灵活性的土方机械已被研发出来用于快速.经济的(工程)操作的实现。路面选择要建设道路表面的类型和厚度是设计中的重要部分。类型的选择取决于该类道路要承受的最大荷载,频率以及其他因素。对一些路来讲,交通量也许会如此之小以至于没有哪类路面被证明是经济的,天然土壤就被用作道路。随着交通量的增加,沙土,碎炉渣,碎石,钠硝石,碎牡蛎壳,或是以上的混合物可以被用来做路面。如果使用砂砾,通常应包含足够的黏土和优质材料来协助提高路面稳定性。氯化钙的使用可以进一步加强砂砾路面的稳定性,同时也有利于控制灰尘量。另一种路面由硅酸盐水泥加水混入路基的上面几英寸并由压路机压实。这一程序构成了土-混凝土复合路基并由沥青质材料做路面。用于大交通量的重型交通工具的道路必须仔细设计并要(设计具有)相当大的厚度。排水结构高速公路工程的许多部分是计划和建设用于高速公路或街道排水设备的,以及使得小溪穿过高速公路的可通行段。将道路或是街道表面的水移走就是表面排水。它是通过建成一条路,中间有顶以及使路肩及其附属区域倾斜,从而将水导向已有的天然沟渠,像敞开的壕沟,或是导向集水箱和地下管道的暴雨排水系统,(来实现表面排水)。如果使用了暴雨排水系统,由于它要和(城市)街道衔接,设计工程师必须考虑街道总的排水面积,期望的最大排水率,暴雨持续时间设计值,每一个集水箱的允许倾注量,以及计划的集水箱沿街间距。通过这些信息,每一个集水箱的期望容量以及地下管网的尺寸才被计算出来。设计公路下的排水设施时,工程师必须确定需要排水的范围.排水区域最大可能的降雨量.最大可能的流速,然后利用这些资料,推算所需排水结构的负荷量。概略设计中要考虑充分,不仅要适合该地区已有记录的最大流量,而且要考虑在给定年限内在最不利条件下可能发生的最大流量。开放式管道在计算预期流量是要考虑的因素包括尺寸.长度.开口形状,管壁粗糙程度,入口和下游沟渠末端的形状,入口处允许的最大水位高度以及出口处水位。休息设施许多工程和建设工作是完成提供主要高速公路沿线休息场所的,特别是(属于)国家系统的州际高速公路。这些设施必须仔细布置以便能方便安全的出入高速公路。许多设施做成景观模样坐落于森林覆盖区以便(行人)可以在地上野餐或是在森林中散步。这种休息区特别受到那些跑长途而又很少停车休息的司机的欢迎。噪声屏障控制.减少繁忙道路,特别是高速公路,沿线噪声已经变成高速公路工程中非常重要的一部分。在一些社区,人们沿高速公路两侧筑起了高墙。建造这些高墙会很花钱,但是提供了许多便利。隔音栅栏能减少全部噪声量的超过50%。建设工作尽管前期要做大量的工程和计划,但实际工程通常是建造高速公路以及街道改造中耗资最大的部分。立杆定线根据一份基于细节计划准备和规范的授权建设合同,工程师来到工地现场布置工程。作为立杆定线的一部分,(工程师)要指出土方工程量,排水沟结构的位置,并建立剖面图。压实(路基)重型压路机把道路下面的土壤和路基压实为了消除以后的沉降。气胎压路机和羊脚压路机(配有许多小轮齿和轮脚的钢柱轮)常常被租来完成此类工作。近年来,振荡压路机已被开发出用于某些工程。有一种振荡频率高达3400/分的振荡压路机可以压实到一个令人满意的深度范围内的地下材料。维护和操作高速公路维护由路面路肩,桥梁排水设备,标志,交通控制设备,防护围栏,行人通道上的斑马线,挡土墙以及边坡的维护和维修等组成。附加工作包括控制结冰和移走积雪。因为搞清楚为什么有些高速公路的设计比另一些高速公路有更佳的功效和更少的用于维护的开销是很值得的,所以负责监理维护的工程师能提供很有价值的引导给设计工程师。总而言之,维护和施工都是高速公路工程的重要组成部分。第12课 交通管制交通管制是一项旨在给在街道和高速公路上做复杂运动的汽车.卡车.巴士以及行人带来秩序和安全的科学工作。交通管制通过在现有的街道和高速公路上疏导交通以及使用各种交通管制设备来改善车辆的运行情况。它还利用先进的技术设计规划出新型的高速公路以满足摩托车驾驶者,行人,特种车辆的需求喜好。在各个国家中,人们对乘坐汽车出行的信赖度的增加强化了改善高速公路运输的需求。人口向城区流动,在城市上班-这一变化决定着设计交通容量。另外,对环境质量越来越多的关注强化了充分利用现有街道和高速公路的需求。为了提高安全性和机动性,以及更加充分地利用城市空间,需要有不断提高的更加精细的交通控制的方法。在工程上,交通控制的方法包括四个基本技术:(1)交通路径选择,包括单行道,直通大街,可回行道和专为卡车.巴士设计的特殊道路;(2)交通规则,包括停车和负载控制,转向控制,速度限制以及高速公路运营。(3)交通管制设备诸如招牌,信号灯,标记(4)实物上的改善,诸如交通渠化和十字路口再设计。交通路线 交通路线设计中最重要的一步是决定城市中每条街道的主要用途。这个决定将更进一步地导致建成能够最好地适应不同部分的交通流和不同种的交通工具的道路。这也是建设符合特殊标准道路的基础。那样也许会最终导致建成一条卡车专用道-一条专供卡车通行的路,适合长途旅行,或者其他一些特殊交通需求的道路。高速公路系统-极大地趋向于城际间的长途旅行-代表了最明晰的实用性原则-不同的道路系统应该满足不同种类的车辆需求。高速公路通过毗邻?。大多数高速公路同样包括高标准的人行道宽度,曲率,照明以及标志。在已建成的城市高速公路部分通常或是低于地面或是被高架起来。降低或是高架的道路就允许其和当地街道之间有合适数目的十字路以及交互式立体交叉。许多早期的高速路通过环绕城市外围的方式来避免车辆通过市区中心。在许多大城市,交叉通行的车辆只是很小的一部分,并且很多高速路都是为本地车辆使用。高速公路系统有望达到美国城市道路总英里数的5%并且控制半数交通量。直通大街促进了交通并提高其安全性。在大多数城市,道路系统通过交通信号灯或者禁行标志给予机动车驾驶人员直接通行的路权以及在起与其他街道交叉口出以明确的控制权来保障其通行。一个高效率的直通街道系统是将车辆集中在高质量的街道上,减少在其他街道上的阻塞和事故。同时,一个好的直通街道系统将使直通车辆能够更快地行驶以及提供通往市区的高速公路系统。单行道系统被广泛用于缓解市中心的交通阻塞。这些系统也用于克服邻近空间交通信号的时间问题。纽约市已在曼哈顿的几乎所有街道和街区采纳了这一方案。类似系统尽管没有如此广泛,已在大部分的美国大城市中心以及一些小城市普遍采用。该技术已得到世界范围的认可,尤其对那些街道阔宽很困难的城市特别有帮助。单行道消除了道路交叉地段潜在的冲突并且普遍提高了交通安全,加快了行驶速度。可逆行道路在一天中的不同时段有不同的行驶方向。在非交通高峰期他们可用于双向车道。华盛顿特区在城市的多个主要街道都采用了该系统。在大多数情况下,可逆行街道比整体街道更加适用。通常情况下,中心街道或是干道分支在交通高峰期将用于分流掌控最大交通流量方向的街道。标志,标记或者头顶信号均被用来提醒司机该道路是可逆的。洛杉机和芝加哥将该实践用于他们的一些最繁忙的交通干道上。芝加哥,圣路易丝安娜将可逆行道路用于高速公路。在某些高速公路的中心,两侧各修有一条特殊道路,供一天中不同时段车辆逆行使用。因为在高速路上行驶速度很快,通常要使用头顶信号,配以可移动护拦来阻止车辆以错误的方向进入这些车道。在许多城市里的 商用卡车行驶在以重型交通工具标准为依据设计的道路上。好的卡车道路可以帮助卡车避免来自其他交通工具的不必要的干扰。非商用交通工具允许使用卡车道,除非在一些特殊情况下高速公路线被设计成仅供卡车使用。特殊公交线作为一种辅助运输方式正得到日益增长的关注。纳什维尔,新奥尔良以及费城在市中心都有类似车道供高峰时刻使用。交通规则 交通工程程序包括停车,装载,转向,行人的通行以及车速等规则。一些交通规则必须供车辆通行的地方禁止停车。其它一些规则是关于那些竞争使用但缺乏控制的空间,诸如荷载,长短期停车问题。停车规则有时仅适用于高峰时刻的交通运行。然而,特别是在一些商务区,停车在任何时段均被禁止。转向限制用于在高峰时期转向会带来交通堵塞或者在任何时刻会造成危险的转向。临时转向限制可以通过信号可改变的或永久性标志或交警来控制。行人控制被广泛用于许多繁忙的十字路口。通常通过特定时段交通信号灯的交替变化来限制行人通行。这样就减少了行人干涉转向车辆的可能。并且通过告诉行人何时通行不安全来增强路人的安全性。在一些非常规的危险地段会使用一些设施,诸如链条或是篱笆来限制行人通行。此类事物控制设备通常在警告信号没有被给予充分的注意的情况下使用。步行标志被广泛用于引导行人走人行横道。此类标志的安全性优点通常被认为是由于路人的群体行为而并非由该类标志本身的保护能力所带来的。速度规则是其中被最广泛地用于交通技术的。这些规则建议机动车辆驾驶员以及交警将行驶速度控制在通常条件下的安全范围内。当代车速区域的划分是以交通工具行驶速度的测量统计为基础,并以提高车流通行为目的设计的,而不是为了随意降低机动车的行驶速度。速度区域划分在美国比在欧洲更普遍使用,在欧洲许多国家的乡村高速公路通常没有限制最高时速。交通控制设计 交通控制中的标志,标记信号通常随着技术的进步而改变。电脑和远程监视设备使得处理成千上万比特的交通信息成为现实并用来帮助信号计时或者为机动车驾驶员提供可选择道路。这些先进技术允许交通信号在城市中更广阔的范围内协调控制而不是仅仅局限于一条街道。大范围控制已在伦敦,格拉斯哥以及多伦多得到成功实现。以减少交通堵塞为目的的大区域交通信号协调控制同样具有普通信号灯在互相冲突的交通流中分享路权以及减少潜在事故发生的作用。交通信号用于为机动车驾驶员提供合适的通行道路。发出危险警告以及指导车辆的目的地,同样被大大改善了。大部分天然材料的改善源于技术的进步。材料的进步已在全世界范围内体现在交通控制的设计标准上。特别重要的是交通工程师把“做标志”叫做“在高速公路沿途作记号”设计者需要仔细考虑路标的颜色,象征意义,以及不同标志的形状。这些国际惯例将导致其在美国使用时具有更大的象征意义。诸如道路中心线以及道路边界线的步行标志会十分有利于指导司机行驶在他所期望的路上或是转弯。高架塑料标记作为一种耐久性材料在承受较大荷载压力的道路以及在雨天提供更加视野方面正在被日益广泛应用。自从机动车驾驶员在现存标志帮助下更加经济地利了用道路空间后,步行标志作为一种从现存道路里走出来的方法正被大量使用。实物设备的改善 大部分实物设备的改善,诸如道路渠化和交互式立体交叉再设计从根本上提高了现有道路的使用情况。道路渠化通常包括增设混凝土岛,为车辆通过复杂大型交叉区域设计出合适道路。同时提高通行效率和安全性等几个方面。道路交叉口再设计通常是针对消除道路瓶颈,例如狭窄路段或使用不便的转弯,或通过改善视野提高安全。市中心的步行街设计正在越来越多地利用超市设计中的一些技术。商业街通常在商业比较发达的街道发展起来并行人通行,但在紧急情况下可供交通工具行驶。商业街周边通常要有停车点,例如Fresno,Pomona,Calif以及Kalamazoo,Mich.其他减轻市中心交通拥塞的方法包括在城市边缘划分和运输停靠点想连的停车点。比如在克利夫兰和芝加哥就很常见。或是通过在市中心附近建成若干通向市中心的车辆停泊分流点。例如在圣路易丝安,密苏里州以及华盛顿特区。为了解决市中心的卡车问题达拉斯在所有新建建筑下建成一套地下停车系统。为了将行人和车辆分开,明尼阿波利斯和伦敦创建了扩展行人天桥和第二道人行道。第13课 地下空间的利用全球城市化进程的加快将会对人类将来的生存方式产生重大影响。随着全球人口的增长以及更多国家要求提高生活水平,世界必须提供更多食物,能源以及矿物资源来维持此增长趋势。解决这一难题的办法有三大渠道复合而成:农业用地的保护从而得到更深入的利用;日益增长的全球城市人口;对保护和改善环境日益增长的关注,特别是关于全球气候变暖以及人口增长带来的影响。地下空间的利用,作为本章要描述的内容,将提供针对这些趋势的解决办法。通过将特殊器材设备置于地下,城市地表可被更有效地利用,这样就可释放出空间供农业和娱乐使用。类似的,在陡峭的山坡上使用阶地掩土住宅会有助于在多山地区保护宝贵的可耕平地。利用地下空间也可以提高人们在人口高密集去的居住舒适度,改善生活质量。一城市或当地水准,地下设施的利用正日益满足当今社会对于改善环境的需求。例如不论城市还是农村都需要提高运输,实用以及娱乐服务。世界上许多城市的交通堵塞问题已经处在满足人类基本生存需求的临界点上,并且在不破坏地表环境的基础上不增加新设施或是不重新规划现有土地及周边地带上的建筑的基础上想要解决这一难题是十分困难的。以世界上许多国家的国家水平,全球化的趋势导致对煤炭,石油,天然气的开采已达到更深的地层以下,触及更难以让人接受或是更敏感的区域。这些趋势同样导致针对能源繁衍存贮系统以及用于处理危险废料(包括化学,生物以及放射性废料)的国家设施设计的改善和提高,同样也改善了国家高速运输体系。所有这些发展均涉及地下工程。用地压力将设施置于地下是缓解由于世界人口增长所带来的城市化问题的一种有希望的办法。虽然世界平均人口密度并不大,但人口分布却极不均匀。世界人口密度图显示世界上大部分地方根本不适合居住。这些大方大部分是沙漠山区,或是极度严寒地带等人类不易居住区。以中国为例,平均人口密度大概是每平方公里100人,但是10亿多的绝大部分人口居住在少于20%的国土上。这是那些可以提供粮食产品的肥沃土地。然而,由于人口增长和城市化,这些土地同样要被用于创建更广阔的运输系统,被用于工商业的发展,以及日益增长的住房需求。随着人口和经济的增长,农业用地减少,向城市人口运送食物和原材料的问题日益增长。据估计,到2000年,世界人口的70%将居住在城市。同样的问题在日本也很明显,大约80%的土地是山区,90%的人口居住在海边平原经济发展集中在几个相关的经济中心。平原通常是最肥沃的土地,从历史上看也是人类的定居地。其他附加于人口密度的因素包括:传统低层的建筑模式,而且日本法律规定必须建造靠近阳光的坚固的维护设施。同样,为了保护家庭粮食生产能力,日本政府保护农业用地。这些历史,政策因素导致大量商业,个人向经济中心移民造成了巨大的土地使用压力。结果是市中心土地价格惊人昂贵(高达50万美圆/平米)并且很难为人们提供住房,交通,设施服务。普通公司雇员无法承担住在他们工作的市中心附近而不得不搭乘公汽单程花1.2个小时从他们负担的起的住处到公司。为了为日益扩大的大城市区域提供服务,市政当局必须升级道路并且兴建新的交通线和设施。东京市中心的土地价格如此昂贵以至于用于购买土地的花费可能会占到工程总花费的95%。土地使用压力和由于高土地使用价格带来的相关经济影响使得对地下空间的潜在利用的研究变得相当有趣。当地表土地已被利用殆尽,地下空间将变成可开发的区域之一。这为不需深度破坏地表环境而附加需要设备提供了一种可能。虽然没有高额地价,但是建造地下设施的高额花费将是地下空间利用的一大拦路虎。因为地下设施不具有经济竞争力,因此在考虑建造前必须在美学,环境或者是社会效应方面给予综合评估,除非是一些有特殊标志性意义的设施否则将会造成现阶段国家无法承担或是很勉强承担的奢侈浪费。地下空间规划对地下空间利用的有效规划是发展地下设施的前奏。这个计划必须是为长远考虑的,并根据人们理想的工作和居住环境重构城市建筑格局。如果地下空间开发可以提供最具价值的长期效益,那么对这些资源的有效计划就应得以实施。不幸的是,在世界范围内,靠公众权力来开发近地表空间已经太迟了。紊乱的设施网络司空见惯归咎于缺乏协调以及使用设施的历史性变革以及交通系统的发展。地下空间具有如此特征导致要做一个好的规则需要特别注意一些问题1、一旦开始地下开挖,土地将被永久改变。地下建筑不象表面建筑那样容易拆掉。2、开挖一片地下空间需要一大片土地作为开挖加固区。3、土地的地理构成极大地影响了地下设施的种类,形式以及开销。但现有关于地表建筑的知识仅有很有限的内容与此相关,因此需要查阅钻探资料和以前的记录。4、大型地下工程需要大量调查,涉及更大的建造问题,工期拖延以及预算超支等风险。5、传统规则技术主要侧重于对于城市地形区域的二维描述。这基本上仅适合地表及上部结构但并不适合建造在处于复杂三维地理环境中的地下结构。用同一种模式来描述这种三维信息并立刻反映到规则评估中是件非常困难的事例如,在东京,第一条地铁(Ginza线)是在现存地表层设施下作为一个影子工程线路(10m深)建成的。随着填加更多的地铁线,在更深土层中才会发现比较规整的区域。在东京,新的KeiyoJR线深达40m。一条从Marunouchi到Shinjuku的高速干线已被设计到50m深。作为比较在伦敦最深的设施大约70m深,其主要复杂部分以及排水设施至少超过25m综合日益增长的需要,有一个事实就是这类新型运输服务(例如日本的新干线子弹头列车或是法国的TGV)通常需要大量交叉隧道,笔直的队列以及平坦性。如果地下空间不是此类用途,那么城市下面将会产生非常无效率的布局。环境利益另一个利用地下空间的主要策略是全球日益增长的对环境问题的关注,并导致人们重新考虑城市的将来和工业的发展。在关注维持生态平衡和环境恶化以及全球有限的自然资源要考虑以下几个问题:1、日益增长的能源消费量相对于满足将来需求的有限矿物燃料的贮备2、由于燃烧矿物燃料对全球气候带来的影响3、工业副产品对环境的污染4、对于工业生产及军事演习产生的危险废物的安全处置在提高经济增长保持工业模式的同时保护环境,延长地球上资源的寿命即使不是一个不可能的问题也是一个很复杂的问题。无论如何,高生活标准和高国内生产总值(GDP)不需要和资源的消耗和环境的恶化程度成比例。地下空间的利用能从几种途径解决环境/资源的窘境。地下设施以其自身特点成为一种典型的储能设施。更重要的是,通过地下空间的利用,城市人口密度会提高但对环境的影响会减少。相对于保护绿地及耕地等的明显好处,附加于此的好处是-有充分证据显示高城市密度可以减少矿物燃料的消耗。将来地下空间的发展虽然在全世界范围内现有的地下设施为将来地下空间的发展提供了一些范例,但他们都在尺寸上,用途上或者对于城市整体环境缺乏考虑。作为更佳细致规划和研究的补充,未来的规划者和设计者已提出对大范围地下结构甚至从整个城市的角度综合考核,将是非常有用的。90年代地理一个1990年4月在日本举行的研讨博览会,主要是一个关于日本地下工业情况的论坛。一大堆关于地下的概念展示出来从典型的运输使用设施到展望中的用于灾难时刻保护通讯网络的地下走廊。这类走廊对于在城市地铁站和中心生产去附近以及市区外安置地点间运送废弃物和能源也十分有效。这一点不仅缓解了堵塞而且提供了更加有效的能源衍生和废物循环。这些概念都是针对城市建筑的升级,将最终导致地表形成更开阔的空间以及更高效更吸引人的全局环境。当展望将来城市建设时,地下建筑会成为主要因素这是建筑师Paolo Soleri在过去30年的幻想杰作。在科幻小说里,未来城市常被描绘成自我供养的,气候可控制的单位,且常常位于地下以避免来自危险或环境污染等因素的侵袭。在这种情况下,地球上的地下城市略不同于以月球或其他孤立环境为基础创建的第14课 如何开挖隧道在一条隧道的大致方向定下来之后,下一步就是调查隧道沿途地层的钻孔资料并获取具体的地层信息。隧道长度和横断面通常由其用途决定,但是其形状必须设计成对内外荷载产生最佳抗力的形式。通常会选择圆形或近似的圆形。在非常坚硬的岩石中,通常采用钻机和爆破开挖。在软弱到中硬岩石,采用隧道挖掘机是典型的开挖方式。在软弱土层,通常采用盾构和挤压软弱土质的方式向前推进。在所有岩石或土层的开挖方式中,淤泥土要被收集起来运出隧道。在开挖水下隧道时,要采用盾构向前推进。另一种开挖水下隧道的方法是将深管放入河底或水中其他位置的已开挖的深沟中。硬岩隧道穿过硬岩石短隧道仅从入口开挖,但是较长的隧道通常是从一个或几个地方同时开挖。有些长隧道是在平行于主隧道开挖的小型导洞辅助下建造的。导洞与主隧道之间每隔一段距离由横巷连通。导洞不仅是通道的附属设施也是运土,通风,排水的通路。另一种方法是采用正台阶开掘系统,以前被用于大型隧道因为它仅要求更少的火药并且允许同时钻孔和运土(转移开挖材料)上部隧道导向下部这就叫做阶地,一部分独立的施工人员就可以在上部钻孔的同时在下部运土。随着隧道开挖方法的改善和机械化,以前仅用于小型隧道的全面施工方法,也开始普遍用于修建大型隧道。这种改变部分原因是隧道钻车一种装有大量岩石钻头的可移动平台的引进。利用这种设备,一大片隧洞面可同时钻探。全面施工法已变成最普遍最迅速的开挖隧道方法。软土层隧道有一些隧道是全部或绝大部分穿越软土层。在很软的土层中很少甚至不需要爆破,因为土质非常容易开挖。一开始,超前伸梁掘进法是在软弱土层中建造隧道的唯一方法。超前掘进伸梁是一块大约5英尺(1.5m)长并且前端被锐化成一点的重重的厚板。他们被插入隧道表面的支撑柱的顶层水平条内。然后超前伸梁向外倾斜钻入土层表面,在所有顶层杆被插入一半深度后,一根木料被交叉放置在它们的外露端来抵抗所有的外部应变。伸梁就这样提供了一种可以伸缩的坑道支撑,表面在其下伸出来。当杆的末端伸到后,再添加新的木材,伸梁被插入土中供隧道下一节使用。压缩空气的使用简化了软土中的施工。首先建成一个空气锁,人和设备通过它进出,在开挖过程中,足够的空气压力来维持坑道表面的坚固直至木材或其他支撑设施树起来。另一种发展是以铸铁或钢铁圆盘嵌固隧道四周其后以水压力盾构支撑。这种铁盘在施工过程中为隧道提供了足够的支撑力,同样为施工人员提供了足够的施工空间。水下隧道施工最困难的隧道是在一条河的下面一定深度处或水域其他部分中开挖隧道。在这种情况下,水会通过可渗透材料或裂缝渗出,影响了在上部水压力作用下的隧道施工进度。当隧道穿越粘稠土质时,水的流量也许会小到用水泵就可以抽干。在更大渗透性的土壤中,必须使用压缩空气来排水。所需空气压力随隧道距离表层的距离增加而增加。实践证明,圆形盾构抵抗软土压力是最有效的,所以大多数盾构掘进的隧道都是圆形的。盾构曾经是由钢盘和角撑组成,再加上前端一个很重的支撑隔层。前端隔层有许多开的门以便工人可以在盾构前部开挖。在进一步的改进中,盾构向河床的粉质粘土中灌浆,通过这种方式将软弱土质从门里挤压进隧道,再从隧道将土运出。柱状的盾构壳可以在隔层前伸长好几尺以提供一个剪切面。后面的部分被称为尾巴向后伸展好几尺来保护施工工人。在大型的盾构机械中,一个起重臂被用在盾构的尾部延隧道四周来代替金属支撑段。盾构向前移动的阻力可能超过1000磅/平方尺(4880公斤/平方米)。液压千斤顶被用来克服这个阻力推动盾构向前,它能在盾构外侧提供每平方尺5000磅压力(24,500公斤/平方米)盾构可以通过各种起重机左右上下调整,以适应隧道左右上下的方向。千斤顶延隧道线向每一段向前的装炉内挤浆。整个循环过程是向前推进,定线,运土,然后另一段向前推进。1955年用于纽约市林肯隧道第三段的盾构长18尺(5.5米)直径31.5尺(9.6米)。每次向前推进32英寸(81.2cm),在其后制作一个32英寸的支撑环。铸铁段通常被用在这样的盾构后面。它们被立起来并在短时间内熔为一体以提供强度和防水。在林肯隧道的第三节,每段7尺(2m)长,32英寸(81cm)宽,14英寸(35.5cm)厚,重大约1.5吨。这些段由14个小片段环熔合在一起。这种熔合的加紧先由手工后由机器完成。一旦它们就位,这些片段被旱在一起以保证永久性防水。水下隧道当河床心土很坚固并且河水水量当前不是很充足的时候,岸边制造的隧道段可以拉到一个河床中已经准备好的壕沟里并沉入水底以形成一个水下隧道。第一个主要的预制漂浮式沉管隧道是位于安大略省的底特律和Windsor之间的底特律河隧道。这条运输隧道建于1906-1910年。第二条类似方法建成的主要运输隧道是Posey隧道,竣工于1928年。它位于加州的奥克兰和Alameda之间的一条咸水河中。从那以后许多其他水底隧道被建于水下或是咸水区域中,特别是位于奥克兰和圣弗朗西思科的Transbay隧道。柱状隧道段通常位于向河岸的场地并由钢铁制成。每段大约300尺(90m)长,28到48尺(8.5-14.6m)的半径。在每一段末端的开口处后面是用钢制挡水墙封口,管子准备成发射船的样式。节段一旦放入水中,将使用混凝土压载直到达到最小浮力。然后这个节段被拖到隧道指定位置。在每一个节段就位之前,挖泥船和水下挖掘机会为隧道挖出一个合适深度的壕沟。当这个管段被精确地放到它最终就位的位置时,灌浆直至它沉到合适的沟槽里。隧道的所有分段以同样方式运输和下沉就位。每段都有施工缝或是凸盘通过阴阳榫电焊来拼装起来或是和前面段衔接。在每一段及其后续段下沉之后,潜水工人通过螺栓将接合处上紧啮合。钢盘被沿着两个封闭的挡水墙之间的连接处滑下。连接处再用混凝土焊在一起以增强段与段之间的防水性。当所有的段被就位并连接好后,上面再填土以给予其稳定性和保护。从这个意义上讲,水下管道技术是老式挖填土方法在水下的应用。当施工结束时,工作人员从隧道每一节末端进入并在进入管道中心时推掉挡水墙。然后再用混凝土做管道内衬以获得更好的外形和更大的安全性。随后贴瓷砖,做风道衬里,安电线,水泵,管道等第15课 土力学土力学研究的是力学和水力学的法则在牵涉土的工程问题中的应用。土是一种天然矿物颗粒的聚集物,有的含有有的不含有机成分,它由岩石的风化或是机械作用形成。它包括三种成分:固体矿物质,水以及空气和其他气体。土质组成变化很大,正是这种不均质性大大地阻碍了科学家对这些沉积物的研究。渐渐地,对挡土墙,基础,护堤,人行道和其他结构的事故的调查发现其原因涉及到许多天然土的知识并且它们的工况充分提高了土力学作为工程科学的一个分支。历史直到18世纪后半期,法国物理学家查尔斯-奥斯丁 库仑出版他的土压力理论(1773年)之前,以科学的基础处理土的问题几乎没有任何进展。1857年,苏格兰工程师威廉姆 朗金发展了一种土体平衡理论并将其用于一些初步的基础工程问题。这两大理论仍然构成了当今计算土压力理论的基础,尽管他们建立在所有土都象干沙一样不考虑内聚力这一错误概念的基础上。二十世纪的进步在于:把内聚力引入计算;了解了通常情况下土的基本物理特性和特殊情况下粘土的特性;系统地研究了土的剪切特性,即滑动剪切条件下的变形。库仑和朗金土压力理论都假设土的剪切破坏面在一个平面内。然而对于砂土来说这是近似可信的,有内聚力土的滑动剪切面接近一个曲面。在二十世纪早期,瑞典工程师证明滑动剪切面是一个圆弧面。上个世纪后半段,在土的科研,理论的应用以及用于工程设计的经验数据方面都有了明显进步。一个显著的进步是德国工程师卡尔 泰沙基在1925年出版了一本关于粘土在许用应力下固结情况的力学调查。他的被工程经验证实的分析解释了在充分渗透的粘土上沉降随时间增长的问题。泰沙基在1925年出版了Erdbaumechanik(“土力学”)一书后开辟了土力学时代。关于地基材料,人行道下的天然基础的研究始于1920年美国公共道路局。他们做了一些关于人行道设计的和天然土有关的简单实验。在英格兰,道路研究司创建于1933年。1936年第一个岩土方面的世界会议在哈佛举行。今天,市政工程极大地依赖于实验的大量数据来巩固经验以及与之相关的新的问题来建立解决方案。获得这样的土质实验的典型例子,无论如何是很极其困难的;因此有一种在实验室做比例模型来代替这种现场实验的趋向,并且许多重要的性质都是由这种方法得到的。土的工程性质决定土的工程适用性的性质包括:内摩擦力,内聚力,压缩性,弹性,渗透性以及毛细性。内摩擦力是土体抵抗滑动的力。砂土和砾石土比粘土有更大的内摩擦力;后期水气的增加会降低内摩擦力。土在重结构压迫下滑动的趋势可以转化成剪力;即使一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论