




文档简介
ThisfilecontainstherciseshintsandsolutionsforChapter2ofthebook”IntroductiontotheDesignandAnalysisofAlgorithms”2ndeditionbyA.Levitin.Theproblemsthatmightbechallengingforatleastsomestudentsaremarkedbythosethatmightbedifficultforamajorityofstudentsaremarkedby.rcises2.11.Foreachofthefollowingalgorithmsindicate(i)anaturalsizemetricforitss(ii)itsbasicoperation(iii)whetherthebasicoperationcountcanbedifferentforsofthesamesize:putingn!c.findingthelargestelementinalistofnnumbersd.Euclidsalgorithme.sieveofEratosthenesf.pen-and-pencilalgorithmultiplyingtwon-digitdecimalintegers2.a.Considerthedefinition-basedalgorithmforaddingtwon-by-nmatri-ces.WhatisitsbasicoperationHowmanytimesisitperedasafunctionofthematrixordernAsafunctionofthetotalnumberofelementsinthematricesb.Answerthesamequestionsforthedefinition-basedalgorithmatrixmultiplication.3.Consideravariationofsequentialsearchthatscansalisttoreturnthenumberofoccurrencesofagivensearchkeyinthelist.Willitsefficiencydifferfromtheefficiencyofclassicsequentialsearch4.a.GloveselectionThereare22glovesinadrawer:5pairsofredgloves4pairsofyellowand2pairsofgreen.Youselecttheglovesinthedarkandcancheckthemonlyafteraselectionhasbeenmade.Whatisthesmallestnumberofglovesyouneedtoselecttohaveatleastonematchingpairinthebestcaseintheworstcase(afterMos01#18)b.MissingsocksImaginethatafterwashing5distinctpairsofsocksyoudiscoverthattwosocksaremissing.Ofcourseyouwouldliketohavethelargestnumberofcompletepairsremaining.Thusyouareleftwith4completepairsinthebest-casescenarioandwith3completepairsintheworstcase.Assumingthattheprobabilityofdisappearanceforeach1ofthe10socksisthesamefindtheprobabilityofthebest-casescenariotheprobabilityoftheworst-casescenariothenumberofpairsyoushouldexpectintheaveragecase.(afterMos01#48)5.a.Proveula(2.1)forthenumberofbitsinthebinaryrepresentationofapositiveinteger.b.Whatwouldbetheanalogousulaforthenumberofdecimaldigitsc.Explainwhywithintheacceptedanalysisframeworkitdoesnotmat-terwhetherweusebinaryordecimaldigitsinmeasuringnssize.6.Suggesthowanysortingalgorithmcanbeaugmentedinawaytomakethebest-casecountofitskeycomparisonsequaltojustn1(nisalistssizeofcourse).Doyouthinkitwouldbeaworthwhileadditiontoanysortingalgorithm7.Gaussianeliminationtheclassicalgorithmforsolvingsystemsofnlinearequationsinnunknownsrequiresabout13n3multiplicationswhichisthealgorithmsbasicoperation.a.HowmuchlongershouldyouexpectGaussianeliminationtoworkonasystemof1000equationsversusasystemof500equationsb.Youareconsideringbuyingacomputerthatis1000timesfasterthantheoneyoucurrentlyhave.Bywhatfactorwillthefastercomputerin-creasethesizesofsystemssolvableinthesameamountoftimeasontheoldcomputer8.Foreachofthefollowingfunctionsindicatehowmuchthefunctionsvaluewillchangeifitsargumentisincreasedfourfold.a.log2nb.nc.nd.n2e.n3f.2n9.Indicatewhetherthefirstfunctionofeachofthefollowingpairshasasmallersameorlargerorderofgrowth(towithinaconstantmultiple)thanthesecondfunction.a.n(n+1)and2000n2b.100n2and0.01n3c.log2nandlnnd.log22nandlog2n2e.2n1and2nf.(n1)!andn!10.InventionofchessAccordingtoawell-knownlegendthegameofchesswasinventedmanycenturiesagoinnorthwesternIndiabyasagenamedShashi.Whenhetookhisinventiontohiskingthekinglikedthegame2somuchthatheofferedtheinventoranyrewardhewanted.Sashiaskedforsomegraintobeobtainedasfollows:justasinglegrainofwheatwastobeplacedonthefirstsquareofthechessboardtwoonthesecondfouronthethirdeightonthefourthandsoonuntilall64squareshadbeenfilled.Whatwouldtheultimateresultofthisalgorithmhavebeen3Hintstorcises2.11.Thequestionsareindeedasstraightforwardastheyappearthoughsomeofthemmayhavealternativeanswers.Alsokeepinmindthecaveataboutmeasuringanintegerssize.2.a.Thesumoftwomatricesisdefinedasthematrixwhoseelementsarethesumsofthecorrespondingelementsofthematricesgiven.b.Matrixmultiplicationrequirestwooperations:multiplicationandad-dition.Whichofthetwowouldyouconsiderbasicandwhy3.Willthealgorithmsefficiencyvaryondifferentsofthesamesize4.a.Glovesarenotsocks:theycanberight-handedandleft-handed.b.Youhaveonlytwoqualitativelydifferentoutcomespossible.Countthenumberofwaystogeteachofthetwo.5.a.Provefirstthatifapositivedecimalintegernhasbdigitsinitsbinaryrepresentationthen2b1n0.87.Prove(byusingthedefinitionsofthenotationsinvolved)ordisprove(bygivingaspecificcounterexample)thefollowingassertions.a.Ift(n)O(g(n)theng(n)(t(n).b.(g(n)=(g(n)where0.c.(g(n)=O(g(n)(g(n).d.Foranytwononnegativefunctionst(n)andg(n)definedonthesetofnonnegativeintegerseithert(n)O(g(n)ort(n)(g(n)orboth.8.Provethesectionstheoremfora.notation.b.notation.9.Wementionedinthissectionthatonecancheckwhetherallelementsofanarrayaredistinctbyatwo-partalgorithmbasedonthearrayspresorting.a.Ifthepresortingisdonebyanalgorithmwiththetimeefficiencyin(nlogn)whatwillbethetimeefficiencyclassoftheentirealgorithmb.Ifthesortingalgorithmusedforpresortingneedsanextraarrayofsizenwhatwillbethespaceefficiencyclassoftheentirealgorithm10.DoorinawallYouarefacingawallthatstretchesinfinitelyinbothdirections.Thereisadoorinthewallbutyouknowneitherhowfarawaynorinwhichdirection.Youcanseethedooronlywhenyouarerightnexttoit.DesignanalgorithmthatenablesyoutoreachthedoorbywalkingatmostO(n)stepswherenisthe(unknowntoyou)numberofstepsbetweenyourinitialpositionandthedoor.Par95#6529Hintstorcises2.21.Usethecorrespondingcountsofthealgorithmsbasicoperation(seeSec-tion2.1)andthedefinitionsofOand.2.Establishtheorderofgrowthofn(n+1)2firstandthenusetheinaldefinitionsofOand.(Similarexamplesweregiveninthesection.)3.Simplifythefunctionsgiventosingleoutthetermsdefiningtheirordersofgrowth.4.a.Checkcarefullythepertinentdefinitions.b.Computetheratiolimitsofeverypairofconsecutivefunctionsonthelist.5.Firstsimplifysomeofthefunctions.ThenusethelistoffunctionsinTable2.2to“anchor”eachofthefunctionsgiven.Provetheirfinalplacementbycomputingappropriatelimits.6.a.Youcanprovethisassertioneitherbycomputinganappropriatelimitorbyapplyingmathematicalinduction.b.Computelimnan1an2.7.Provethecorrectnessof(a)(b)and(c)byusingtheappropriatede-finitionsconstructacounterexamplefor(d)(e.g.byconstructingtwofunctionsbehavingdifferentlyforoddandevenvaluesoftheirarguments).8.Theproofofpart(a)issimilartotheonegivenforthetheoremsassertioninSection2.2.Ofcoursedifferentinequalitiesneedtobeusedtoboundthesumfrombelow.9.Followtheanalysisplanusedinthetextwhenthealgorithmwasmen-tionedforthefirsttime.10.Youshouldwalkintermittentlyleftandrightfromyourinitialpositionuntilthedoorisreached.10Solutionstorcises2.21.a.SinceCworst(n)=nCworst(n)(n).b.SinceCbest(n)=1Cbest(1)(1).c.SinceCavg(n)=p(n+1)2+n(1p)=(1p2)n+p2where0p1Cavg(n)(n).2.n(n+1)2n22isquadratic.Thereforea.n(n+1)2O(n3)istrue.b.n(n+1)2O(n2)istrue.c.n(n+1)2(n3)isfalse.d.n(n+1)2(n)istrue.3.a.Inally(n2+1)10(n2)10=n20(n20)allylimn(n2+1)10n20=limn(n2+1)10(n2)10=limnn2+1n210=limn1+1n210=1.Hence(n2+1)10(n20).Note:Analternativeproofcanbebasedonthebinomialulaandtheassertionofrcise6a.b.Inally10n2+7n+310n2=10n(n).allylimn10n2+7n+3n=limn10n2+7n+3n2=limn10+7n+3n2=10.Hence10n2+7n+3(n).c.2nlg(n+2)2+(n+2)2lgn2=2n2lg(n+2)+(n+2)2(lgn1)(nlgn)+(n2lgn)=(n2lgn).d.2n+1+3n1=2n2+3n13(2n)+(3n)=(3n).e.Inallylog2nlog2n(logn).allybyusingthein-equalitiesx1log2n1log2n12log2n(foreveryn4)=12log2n.Hencelog2n(log2n)=(logn).114.a.TheorderofgrowthandtherelatednotationsOanddealwiththeasymptoticbehavioroffunctionsasngoestoinfinity.Thereforenospecificvaluesoffunctionswithinafiniterangeofnsvaluessuggestiveastheymightbecanestablishtheirordersofgrowthwithmathematicalcertainty.b.limnlog2nn=limn(log2n)(n)=limn1nlog2e1=log2elimn1n=0.limnnnlog2n=limn1log2n=0.limnnlog2nn2=limnlog2nn=(seethefirstlimitofthisrcise)=0.limnn2n3=limn1n=0.limnn32n=limn(n3)(2n)=limn3n22nln2=3ln2limnn22n=3ln2limn(n2)(2n)=3ln2limn2n2nln2=6ln22limnn2n=6ln22limn(n)(2n)=6ln22limn12nln2=6ln32limn12n=0.limn2nn!=(seeExample3inthesection)0.5.(n2)!(n2)!)5lg(n+100)10=50lg(n+100)(logn)22n=(22)n(4n)0.001n4+3n3+1(n4)ln2n(log2n)3n(n13)3n(3n).Thelistofthesefunctionsorderedinincreasingorderofgrowthlooksasfollows:5lg(n+100)10ln2n3n0.001n4+3n3+13n22n(n2)!6.a.limnp(n)nk=limnaknk+ak1nk1+.+a0nk=limn(ak+ak1n+.+a0nk)=ak0.Hencep(n)(nk).b.limnan1an2=limna1a2n=0ifa1a2an2o(an1)7.a.Theassertionshouldbecorrectbecauseitstatesthatiftheorderofgrowthoft(n)issmallerthanorequaltotheorderofgrowthofg(n)then12theorderofgrowthofg(n)islargerthanorequaltotheorderofgrowthoft(n).Thealproofisimmediatetoo:t(n)cg(n)forallnn0wherec0implies(1c)t(n)g(n)forallnn0.b.Theassertionthat(g(n)=(g(n)shouldbetruebecauseg(n)andg(n)differjustbyapositiveconstantmultipleandhencebythedefinitionofmusthavethesameorderofgrowth.Thealproofhastoshowthat(g(n)(g(n)and(g(n)(g(n).Letf(n)(g(n)wellshowthatf(n)(g(n).Indeedf(n)cg(n)forallnn0(wherec0)canberewrittenasf(n)c1g(n)forallnn0(wherec1=c0)i.e.f(n)(g(n).Letnowf(n)(g(n)wellshowthatf(n)(g(n)for0.Indeediff(n)(g(n)f(n)cg(n)forallnn0(wherec0)andthereforef(n)cag(n)=c1g(n)forallnn0(wherec1=c0)i.e.f(n)(g(n).c.Theassertionisobviouslycorrect(similartotheassertionthata=bifandonlyifabandab).Thealproofshouldshowthat(g(n)O(g(n)(g(n)andthatO(g(n)(g(n)(g(n)whichimmediatelyfollowfromthedefinitionsofOand.d.Theassertionisfalse.Thefollowingpairoffunctionscanserveasacounterexamplet(n)=nifnisevenn2ifnisoddandg(n)=n2ifnisevennifnisodd138.a.Weneedtoprovethatift1(n)(g1(n)andt2(n)(g2(n)thent1(n)+t2(n)(maxg1(n)g2(n).ProofSincet1(n)(g1(n)thereexistsomepositiveconstantc1andsomenonnegativeintegern1suchthatt1(n)c1g1(n)forallnn1.Sincet2(n)(g2(n)thereexistsomepositiveconstantc2andsomenonnegativeintegern2suchthatt2(n)c2g2(n)forallnn2.Letusdenotec=minc1c2andconsidernmaxn1n2sothatwecanusebothinequalities.Addingthetwoinequalitiesaboveyieldsthefollowing:t1(n)+t2(n)c1g1(n)+c2g2(n)cg1(n)+cg2(n)=cg1(n)+g2(n)cmaxg1(n)g2(n).Hencet1(n)+t2(n)(maxg1(n)g2(n)withtheconstantscandn0requiredbytheOdefinitionbeingminc1c2andmaxn1n2re-spectively.b.Theprooffollowsimmediatelyfromthetheoremprovedinthetext(theOpart)theassertionprovedinpart(a)ofthisrcise(thepart)andthedefinitionof(seercise7c).9.a.Sincetherunningtimeofthesortingpartofthealgorithmwillstilldominatetherunningtimeoftheseconditstheerthatwilldeter-minethetimeefficiencyoftheentirealgorithm.allyitfollowsfromequality(nlogn)+O(n)=(nlogn)whosidityiseasytoproveinthesamemannerasthatofthesectionstheorem.b.Sincethesecondpartofthealgorithmwillusenoextraspacethespaceefficiencyclasswillbedeterminedbythatofthefirst(sorting)part.Thereforeitwillbein(n).10.Thekeyideahereistowalkintermittentlyrightandleftgoingeachtimeexponentiallyfartherfromtheinitialposition.Asimpleimplementationofthisideaistodothefollowinguntilthedoorisreached:Fori=01.make2istepstotherightreturntotheinitialpositionmake2istepsto14theleftandreturntotheinitialpositionagain.Let2k1ni=1(ni1)=nni=11ini=11nn+111xdxn=nln(n+1)n(nlogn).9.Hereisaproofbymathematicalinductionthatni=1i=n(n+1)2foreverypositiveintegern.(i)Basisstep:Forn=1ni=1i=1i=1i=1andn(n+1)2n=1=1(1+1)2=1.(ii)Inductivestep:Assumethatni=1i=n(n+1)2forapositiveintegern.Weneedtoshowthatthenn+1i=1i=(n+1)(n+2)2.Thisisobtainedasfollows:n+1i=1i=ni=1i+(n+1)=n(n+1)2+(n+1)=n(n+1)+2(n+1)2=(n+1)(n+2)2.TheyoungGausscomputedthesum1+2+.+99+100bynoticingthatitcanbecomputedasthesumof50pairseachwiththesum101:1+100=2+99=.=50+51=101.Hencetheentiresumisequalto50101=5050.(Thewell-knownhistoricanecdoteclaimsthathisteachergavethisassignmenttoaclasstokeep24theclassbusy.)TheGaussideacanbeeasilygeneralizedtoanarbitrarynbyaddingS(n)=1+2+.+(n1)+nandS(n)=n+(n1)+.+2+1toobtain2S(n)=(n+1)nandhenceS(n)=n(n+1)2.10.a.ThenumberofmultiplicationsM(n)andthenumberofdivisionsD(n)madebythealgorithmaregivenbythesamesum:M(n)=D(n)=n2i=0n1j=i+1nk=i1=n2i=0n1j=i+1(ni+1)=n2i=0(ni+1)(n1(i+1)+1)=n2i=0(ni+1)(ni1)=(n+1)(n1)+n(n2)+.+31=n1j=1(j+2)j=n1j=1j2+n1j=12j=(n1)n(2n1)6+2(n1)n2=n(n1)(2n+5)613n3(n3).b.TheinefficiencyistherepeateduationoftheratioAjiAiiinthealgorithmsinnermostloopwhichinfactdoesnotchangewiththeloopvariablek.Hencethisloopinvariantcanbecomputedjustoncebeforeenteringthisloop:tempAjiAiitheinnermostloopisthenchangedtoAjkAjkAiktemp.Thischangeeliminatesthemostexpensiveoperationofthealgorithmthedivisionfromitsinnermostloop.Therunningtimegainobtainedbythischangecanbeestimatedasfollows:Told(n)Tnew(n)cM13n3+cD13n3cM13n3=cM+cDcM=cDcM+1wherecDandcMarethetimeforonedivisionandonemultiplicationrespectively.2511.Theanswercanbeobtainedbyastraightforwarduationofthesum2ni=1(2i1)+(2n+1)=2n2+2n+1.(Onecanalsogettheclosed-answerbynotingthatthecellsontheal-ternatingdiagonalsofthevonNeumannneighborhoodofrangencomposetwosquaresofsizesn+1andnrespectively.)26rcises2.41.Solvethefollowingrecurrencerelations.a.x(n)=x(n1)+5forn1x(1)=0b.x(n)=3x(n1)forn1x(1)=4c.x(n)=x(n1)+nforn0 x(0)=0d.x(n)=x(n2)+nforn1x(1)=1(solveforn=2k)e.x(n)=x(n3)+1forn1x(1)=1(solveforn=3k)2.SetupandsolvearecurrencerelationforthenumberofcallsmadebyF(n)therecursivealgorithmforcomputingn!.3.Considerthefollowingrecursivealgorithmforcomputingthesumofthefirstncubes:S(n)=13+23+.+n3.AlgorithmS(n):ApositiveintegernOutput:Thesumofthefirstncubesifn=1return1elsereturnS(n1)+nnna.Setupandsolvearecurrencerelationforthenumberoftimesthealgorithmsbasicoperationiscuted.b.Howdoesthisalgorithmcomparewiththestraightforwardnonrecursivealgorithmforcomputingthisfunction4.Considerthefollowingrecursivealgorithm.AlgorithmQ(n):Apositiveintegernifn=1return1elsereturnQ(n1)+2n1a.Setuparecurrencerelationforthisfunctionsvaluesandsolveittodeterminewhatthisalgorithmcomputes.b.Setuparecurrencerelationforthenumberofmultiplicationsmadebythisalgorithmandsolveit.c.Setuparecurrencerelationforthenumberofadditionssubtractionsmadebythisalgorithmandsolveit.275.a.IntheoriginalversionoftheTowerofHanoipuzzleasitwaspublishedbyEdouardLucasaFrenchmathematicianinthe1890stheworldwillendafter64diskshavebeenmovedfromamysticalTowerofBrahma.Estimatethenumberofyearsitwilltakeifmonkscouldmoveonediskperminute.(Assumethatmonksdonoteatsleepordie.)b.Howmanymovesaremadebytheithlargestdisk(1in)inthisalgorithmc.DesignanonrecursivealgorithmfortheTowerofHanoipuzzle.6.a.Provethattheexactnumberofadditionsmadebytherecursivealgo-rithmBinRec(n)foranarbitrarypositiveintegernislog2n.b.Setuparecurrencerelationforthenumberofadditionsmadebythenonrecursiveversionofthisalgorithm(seeSection2.3Example4)andsolveit.7.a.Designarecursivealgorithmforcomputing2nforanynonnegativeintegernthatisbasedontheula:2n=2n1+2n1.b.Setuparecurrencerelationforthenumberofadditionsmadebythealgorithmandsolveit.c.Drawatreeofrecursivecallsforthisalgorithmandcountthenumberofcallsmadebythealgorithm.d.Isitagoodalgorithmforsolvingthisproblem8.Considerthefollowingrecursivealgorithm.AlgorithmMin1(A0.n1):AnarrayA0.n1ofrealnumbersifn=1returnA0elsetempMin1(A0.n2)iftempAn1returntempelsereturnAn1a.Whatdoesthisalgorithmcomputeb.Setuparecurrencerelationforthealgorithmsbasicoperationcountandsolveit.9.ConsideranotheralgorithmforsolvingthesameproblemastheoneinProblem8whichrecursivelydividesanarrayintotwohalves:28callMin2(A0.n1)whereAlgorithmMin2(Al.r)ifl=rreturnAlelsetemp1Min2(Al.(l+r)2)temp2Min2(A(l+r)2+1.r)iftemp1temp2returntemp1elsereturntemp2a.Setuparecurrencerelationforthealgorithmsbasicoperationandsolveit.b.WhichofthealgorithmsMin1orMin2isfasterCanyousug-gestanalgorithmfortheproblemtheysolvethatwouldbemoreefficientthaneitherofthem10.Thedeterminantofann-by-nmatrixA=a11a1na21a2nan1anndenoteddetAcanbedefinedasa11forn=1andforn1bytherecursiveuladetA=nj=1sja1jdetAjwheresjis+1ifjisoddand-1ifjisevena1jistheelementinrow1andcolumnjandAjisthe(n1)-by-(n1)matrixobtainedfrommatrixAbydeletingitsrow1andcolumnj.a.Setuparecurrencerelationforthenumberofmultiplicationsmadebythealgorithmimplementingthisrecursivedefinition.b.Withoutsolvingtherecurrencewhatcanyousayaboutthesolu-tionsorderofgrowthascomparedton!9.vonNeumannneighborhoodrevisitedFindthenumberofcellsinthevonNeumannneighborhoodofrangen(seeProblem11inrcises2.3)bysettingupandsolvingarecurrencerelation.29Hintstorcises2.41.Eachoftheserecurrencescanbesolvedbytheofbackwardsub-stitutions.2.Therecurrencerelationinquestionisalmostidenticaltotherecurrencerelationforthenumberofmultiplicationswhichwassetupandsolvedinthesection.3.a.Thequestionissimilartothatabouttheefficiencyoftherecursivealgorithmforcomputingn!.b.Writeapseudocodeforthenonrecursivealgorithmanddetermineitsefficiency.4.a.Notethatyouareaskedhereaboutarecurrenceforthefunctionsvaluesnotaboutarecurrenceforthenumberoftimesitsoperationiscuted.Justfollowthepseudocodetosetitup.Itiseasiertosolvethisrecurrencebyforwardsubstitutions(seeAppendixB).b.Thisquestionisverysimilartoonewehavealreadydiscussed.c.Youmaywanttoincludethesubstractionneededtodecreasen.5.a.Usetheulaforthenumberofdiskmovesderivedinthesection.b.Solvetheproblemfor3diskstoinvestigatethenumberofmovesmadebyeachofthedisks.Thengeneralizetheobservationsandprovetheirvalidityforthegeneralcaseofndisks.c.Ifyoufaildonotfeeldiscouraged:thoughanonrecursivealgorithmforthisproblemsisnotcomplicateditisnoteasytodiscover.AsaconsolationfindasolutionontheWeb.6.a.Considerseparatelythecasesofevenandoddvaluesofnandshowthatforbothofthemlog2nsatisfiestherecurrencerelationanditsinitialcondition.b.Justfollowthealgorithmspseudocode.7.a.Usetheula2n=2n1+2n1withoutsimplifyingitdonotforgettoprovideaconditionforstoppingyourrecursivecalls.b.AsimilaralgorithmwasinvestigatedinSection2.4.c.AsimilarquestionwasinvestigatedinSection2.4.d.Abadefficiencyclassofanalgorithmbyitselfdoesnotmeanthat30thealgorithmisbad.ForexampletheclassicalgorithmfortheTowerofHanoipuzzleisoptimaldespiteitsexponential-timeefficiency.Thereforeaclaimthataparticularalgorithmisnotgoodrequiresareferencetoabetterone.8.a.Tracingthealgorithmforn=1andn=2shouldhelp.b.Itisverysimilartooneoftheexample
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年新能源企业国际化技术创新与产业生态构建策略报告
- 银行零售业务数字化营销转型中的金融营销效果提升策略与应用研究报告2025
- 2025-2030工业视觉检测设备在半导体前道工艺应用拓展与技术瓶颈突破报告
- 2025-2030工业自动化领域故障预测与健康管理技术应用现状报告
- 2025-2030工业级无人机适航认证进展与应用场景解锁预测报告
- 2025-2030工业级封装晶体振荡器环境适应性测试标准比较
- 2025-2030工业硅材料提纯技术突破与光伏需求匹配度报告
- 无公害蔬菜供应链透明化管理创新创业项目商业计划书
- 描图纸创新创业项目商业计划书
- 家庭法律咨询服务创新创业项目商业计划书
- 四川省雅安市2022年中考语文试题
- 《肖申克的救赎》完整中英文对照剧本
- 全国优质课一等奖中职中专计算机专业教师教学设计和说课大赛《Premiere视频制作初体验》说课课件
- 2023年云南省中考道德与法治试卷及答案解析
- GB/T 19812.5-2019塑料节水灌溉器材第5部分:地埋式滴灌管
- 世联-洛阳五女冢旧改高端大盘项目整体定位
- FZ/T 01093-2008机织物结构分析方法织物中拆下纱线线密度的测定
- 集中供热管网工程监理大纲范本
- 新食品生产许可管理办法培训课件
- 餐厅厨房设备采购清单
- 工程联系函(模板)
评论
0/150
提交评论