优化方法-2016.docx_第1页
优化方法-2016.docx_第2页
优化方法-2016.docx_第3页
优化方法-2016.docx_第4页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

优化方法上机大作业上机大作业:编写程序求解下述问题 min x f(x) = (1x1)2 + 100(x2 x12)2. 初始点取 x0 = 0, 精度取=1e4,步长由 Armijo 线搜索生成, 方向分别由下列方法生成: 1 最速下降法2 牛顿法3 BFGS 方法 4 共轭梯度法1. 最速下降法源程序如下:function x_star = steepest(x0,eps) gk = grad(x0); res = norm(gk); k = 0; while res eps k=1000 dk = -gk; ak =1; f0 = fun(x0); f1 = fun(x0+ak*dk); slope = dot(gk,dk); while f1 f0 + 0.1*ak*slope ak = ak/2; xk = x0 + ak*dk; f1 = fun(xk); end k = k+1; x0 = xk; gk = grad(xk);res = norm(gk); fprintf(-The %d-th iter, the residual is %fn,k,res); end x_star = xk; end function f = fun(x) f = (1-x(1)2 + 100*(x(2)-x(1)2)2; endfunction g = grad(x) g = zeros(2,1); g(1)=2*(x(1)-1)+400*x(1)*(x(1)2-x(2); g(2) = 200*(x(2)-x(1)2); end 运行结果: x0=0,0;eps=1e-4eps = 1.0000e-004 xk=steepest(x0,eps)-The 1-th iter, the residual is 3.271712-The 2-th iter, the residual is 2.504194-The 3-th iter, the residual is 2.073282-The 998-th iter, the residual is 0.449447-The 999-th iter, the residual is 0.449447-The 1000-th iter, the residual is 0.449447-The 1001-th iter, the residual is 0.449447xk = 0.63690.40382. 牛顿法源程序如下:function x_star = newton(x0,eps) gk = grad(x0); bk = grad2(x0)(-1); res = norm(gk); k = 0; while res eps k=1000 dk=-bk*gk; xk=x0+dk; k = k+1; x0 = xk; gk = grad(xk); bk = grad2(xk)(-1); res = norm(gk); fprintf(-The %d-th iter, the residual is %fn,k,res); end x_star = xk; end function f = fun(x) f = (1-x(1)2 + 100*(x(2)-x(1)2)2; endfunction g = grad2(x) g = zeros(2,2); g(1,1)=2+400*(3*x(1)2-x(2); g(1,2)=-400*x(1); g(2,1)=-400*x(1); g(2,2)=200; end function g = grad(x) g = zeros(2,1); g(1)=2*(x(1)-1)+400*x(1)*(x(1)2-x(2); g(2) = 200*(x(2)-x(1)2); end 运行结果: x0=0,0;eps=1e-4; xk=newton(x0,eps)-The 1-th iter, the residual is 447.213595-The 2-th iter, the residual is 0.000000xk = 1.0000 1.00003. BFGS方法源程序如下:function x_star = bfgs(x0,eps) g0 = grad(x0); gk=g0; res = norm(gk); Hk=eye(2); k = 0; while res eps k=1000 dk = -Hk*gk; ak =1; f0 = fun(x0); f1 = fun(x0+ak*dk); slope = dot(gk,dk); while f1 f0 + 0.1*ak*slope ak = ak/2; xk = x0 + ak*dk; f1 = fun(xk); end k = k+1; fa0=xk-x0; x0 = xk; g0=gk;gk = grad(xk);y0=gk-g0;Hk=(eye(2)-fa0*(y0)/(fa0)*(y0)*(eye(2)-(y0)*(fa0)/(fa0)*(y0)+(fa0*(fa0)/(fa0)*(y0);res = norm(gk); fprintf(-The %d-th iter, the residual is %fn,k,res); end x_star = xk; endfunction f=fun(x) f=(1-x(1)2 + 100*(x(2)-x(1)2)2; endfunction g = grad(x) g = zeros(2,1); g(1)=2*(x(1)-1)+400*x(1)*(x(1)2-x(2); g(2) = 200*(x(2)-x(1)2); end 运行结果: x0=0,0; eps=1e-4; xk=bfgs(x0,eps)-The 1-th iter, the residual is 3.271712-The 2-th iter, the residual is 2.381565-The 3-th iter, the residual is 3.448742-The 998-th iter, the residual is 0.004690-The 999-th iter, the residual is 0.008407-The 1000-th iter, the residual is 0.005314-The 1001-th iter, the residual is 0.010880xk = 0.99550.99114. 共轭梯度法源程序如下:function x_star =conj(x0,eps) gk = grad(x0);res = norm(gk); k = 0; dk = -gk; while res eps k=1000 ak =1; f0 = fun(x0);f1 = fun(x0+ak*dk);slope = dot(gk,dk); while f1 f0 + 0.1*ak*slope ak = ak/2; xk = x0 + ak*dk; f1 = fun(xk); end d0=dk;g0=gk; k=k+1; x0=xk;gk=grad(xk);f=(norm(gk)/norm(g0)2; res=norm(gk);dk=-gk+f*d0;fprintf(-The %d-th iter, the residual is %fn,k,res); end x_star = xk; end function f=fun(x)f=(1-x(1)2+100*(x(2)-x(1)2)2;endfunction g=grad(x)g=zeros(2,1);g(1)=400*x(1)3-400*x(1)*x(2)+2*x(1)-2;g(2)=-200*x(1)2+200*x(2);end 运行结果: x0=0,0; eps=1e-4; xk=Conj(x0,eps)-The 1-th iter, the residual is 3.271712-The 2-th iter, the residual is 1.380542-The 3-th iter, the residual is 4.527780-The 4-th iter, the residual is 0.850596-The 73-th iter, the residual is 0.001532-The 74-th iter, the residual is 0.000402-The 75-th iter, the residual is 0.000134-The 76-th iter, the residual is 0.000057xk = 0.9999 0.9999上机大作业:编写程序利用增广拉格朗日方法求解下述问题 min 4x1 x2 2 12s.t. 25x12 x22 = 0 10x1 x12 + 10x2 x22 34 0x 1,x2 0初始点取 x0 = 0, 精度取= 1e4. 主程序:function x,mu,lamda,output=main(fun,hf,gf,dfun,dhf,dgf,x0)maxk=2000;theta=0.8; eta=2.0;k=0; ink=0;ep=1e-4; sigma=0.4;x=x0; he=feval(hf,x); gi=feval(gf,x);n=length(x); l=length(he); m=length(gi);mu=0.1*ones(l,1); lamda=0.1*ones(m,1);betak=10; betaold=10; while(betakep kmaxk)ik,x,val=bfgs(lagrang,dlagrang,x0,fun,hf,gf,dfun,dhf,dgf,mu,lamda,sigma);ink=ink+ik;he=feval(hf,x); gi=feval(gf,x);betak=sqrt(norm(he,2)2+norm(min(gi,lamda/sigma),2)2);if betakepmu=mu-sigma*he;lamda=max(0.0,lamda-sigma*gi);if(k=2 betaktheta*betaold)sigma=eta*sigma;endendk=k+1;betaold=betak;x0=x;endf=feval(fun,x);output.fval=f;output.iter=k;output.inner_iter=ink;output.beta=betak;增广拉格朗日函数function lag=lagrang(x,fun,hf,gf,dfun,dhf,dgf,mu,lamda,sigma)f=feval(fun,x); he=feval(hf,x); gi=feval(gf,x);l=length(he); m=length(gi);lag=f; s1=0.0;for(i=1:l)lag=lag-he(i)*mu(i);s1=s1+he(i)2;endlag=lag+0.5*sigma*s1;s2=0.0;for(i=1:m)s3=max(0.0,lamda(i)-sigma*gi(i);s2=s2+s32-lamda(i)2;endlag=lag+s2/(2.0*sigma);增广拉格朗日梯度函数function dlag=dlagrang(x,fun,hf,gf,dfun,dhf,dgf,mu,lamda,sigma)dlag=feval(dfun,x);he=feval(hf,x); gi=feval(gf,x);dhe=feval(dhf,x); dgi=feval(dgf,x);l=length(he); m=length(gi);for(i=1:l)dlag=dlag+(sigma*he(i)-mu(i)*dhe(:,i);endfor(i=1:m)dlag=dlag+(sigma*gi(i)-lamda(i)*dgi(:,i);end线搜索程序 基于BFGS方法function k,x,val=bfgs(fun,gfun,x0,varargin)Max=1000;ep=1.e-4;beta=0.55; sigma1=0.4;n=length(x0); Bk=eye(n);k=0;while(kMax)gk=feval(gfun,x0,varargin:);if(norm(gk)ep), break; enddk=-Bkgk; m=0; mk=0;while(m20) newf=feval(fun,x0+betam*dk,varargin:);oldf=feval(fun,x0,varargin:);if(newf=oldf+sigma1*betam*gk*dk)mk=m; break;endm=m+1;endx=x0+betamk*dk;sk=x-x0;yk=feval(gfun,x,varargin:)-gk;if(yk*sk0)Bk=Bk-(Bk*sk*sk*Bk)/(sk*Bk*sk)+(yk*yk)/(yk*sk);endk=k+1;x0=x;endval=feval(fun,x0,varargin:);目标函数文件function f=f1(x)f=4*x(1)-x(2)2-12;等式约束文件function he=h1(x)he=25-x(1)2-x(2)2;不等式约束function gi=g1(x)gi=zeros(3,1);gi(1)=10*x(1)-x(1)2+10*x(2)-x(2)2-34;gi(2)=x(1);gi(3)=x(2);目标函数梯度文件function g=df1(x)g=4;-2*x(1);等式函数梯度文件function dhe=dh1(x)dhe=-2*x(1);-2*x(2);不等式函数梯度文件function dgi=dg1(x)dgi=10-2*x(1),1,0;10-2*x(2),0,1;输入数据X0=0;0x,mu,lamda,output=main(f1,h1,g1,df1,dh1,dg1,x0)输出数据x = 1.0013 4.8987mu = 0.0158lamda = 0.5542 0 0output = fval: -31.9924 iter: 5 inner_iter: 33 beta: 8.4937e-005上机大作业:1.解:将目标函数改写为向量形式:x*a*x-b*x程序代码:n=2;a=0.5,0;0,1;b=2 4;c=1 1;cvx_beginvariable x(n)minimize( x*a*x-b*x)subject toc * x = 1x=0cvx_end运算结果:Calling SDPT3 4.0: 7 variables, 3 equality constraints For improved efficiency, SDPT3 is solving the dual problem.- num. of constraints = 3 dim. of socp var = 4, num. of socp blk = 1 dim. of linear var = 3* SDPT3: Infeasible path-following algorithms* version predcorr gam expon scale_data NT 1 0.000 1 0 it pstep dstep pinfeas dinfeas gap prim-obj dual-obj cputime- 0|0.000|0.000|8.0e-001|6.5e+000|3.1e+002| 1.000000e+001 0.000000e+000| 0:0:00| chol 1 1 1|1.000|0.987|4.3e-007|1.5e-001|1.6e+001| 9.043148e+000 -2.714056e-001| 0:0:01| chol 1 1 2|1.000|1.000|2.6e-007|7.6e-003|1.4e+000| 1.234938e+000 -5.011630e-002| 0:0:01| chol 1 1 3|1.000|1.000|2.4e-007|7.6e-004|3.0e-001| 4.166959e-001 1.181563e-001| 0:0:01| chol 1 1 4|0.892|0.877|6.4e-008|1.6e-004|5.2e-002| 2.773022e-001 2.265122e-001| 0:0:01| chol 1 1 5|1.000|1.000|1.0e-008|7.6e-006|1.5e-002| 2.579468e-001 2.427203e-001| 0:0:01| chol 1 1 6|0.905|0.904|3.1e-009|1.4e-006|2.3e-003| 2.511936e-001 2.488619e-001| 0:0:01| chol 1 1 7|1.000|1.000|6.1e-009|7.7e-008|6.6e-004| 2.503336e-001 2.496718e-001| 0:0:01| chol 1 1 8|0.903|0.903|1.8e-009|1.5e-008|1.0e-004| 2.500507e-001 2.499497e-001| 0:0:01| chol 1 1 9|1.000|1.000|4.9e-010|3.5e-010|2.9e-005| 2.500143e-001 2.499857e-001| 0:0:01| chol 1 1 10|0.904|0.904|5.7e-011|1.3e-010|4.4e-006| 2.500022e-001 2.499978e-001| 0:0:01| chol 2 2 11|1.000|1.000|5.2e-013|1.1e-011|1.2e-006| 2.500006e-001 2.499994e-001| 0:0:01| chol 2 2 12|1.000|1.000|5.9e-013|1.0e-012|1.8e-007| 2.500001e-001 2.499999e-001| 0:0:01| chol 2 2 13|1.000|1.000|1.7e-012|1.0e-012|4.2e-008| 2.500000e-001 2.500000e-001| 0:0:01| chol 2 2 14|1.000|1.000|2.3e-012|1.0e-012|7.3e-009| 2.500000e-001 2.500000e-001| 0:0:01| stop: max(relative gap, infeasibilities) 1.49e-008- number of iterations = 14 primal objective value = 2.50000004e-001 dual objective value = 2.49999996e-001 gap := trace(XZ) = 7.29e-009 relative gap = 4.86e-009 actual relative gap = 4.86e-009 rel. primal infeas (scaled problem) = 2.33e-012 rel. dual = 1.00e-012 rel. primal infeas (unscaled problem) = 0.00e+000 rel. dual = 0.00e+000 norm(X), norm(y), norm(Z) = 3.2e+000, 1.5e+000, 1.9e+000 norm(A), norm(b), norm(C) = 3.9e+000, 4.2e+000, 2.6e+000 Total CPU time (secs) = 0.99 CPU time per iteration = 0.07 termination code = 0 DIMACS: 3.3e-012 0.0e+000 1.3e-012 0.0e+000 4.9e-009 4.9e-009- -Status: SolvedOptimal value (cvx_optval): -32. 解:将目标函数改写为向量形式:程序代码:n=3;a=-3 -1 -3;b=2;5;6;C=2 1 1;1 2 3;2 2 1;cvx_begin variable x(n) minimize( a*x) subject to C * x = b x=0cvx_end运行结果:Calling SDPT3 4.0: 6 variables, 3 equality constraints- num. of constraints = 3 dim. of linear var = 6* SDPT3: Infeasible path-following algorithms* version predcorr gam expon scale_data NT 1 0.000 1 0 it pstep dstep pinfeas dinfeas gap prim-obj dual-obj cputime- 0|0.000|0.000|1.1e+001|5.1e+000|6.0e+002|-7.000000e+001 0.000000e+000| 0:0:00| chol 1 1 1|0.912|1.000|9.4e-001|4.6e-002|6.5e+001|-5.606627e+000 -2.967567e+001| 0:0:00| chol 1 1 2|1.000|1.000|1.3e-007|4.6e-003|8.5e+000|-2.723981e+000 -1.113509e+001| 0:0:00| chol 1 1 3|1.000|0.961|2.3e-008|6.2e-004|1.8e+000|-4.348354e+000 -6.122853e+000| 0:0:00| chol 1 1 4|0.881|1.000|2.2e-008|4.6e-005|3.7e-001|-5.255152e+000 -5.622375e+000| 0:0:00| c

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论