




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第6讲立体几何中的向量方法(一)证明平行与垂直基础巩固题组(建议用时:40分钟)一、填空题1(2014徐州模拟)已知空间三点A(0,2,3),B(2,1,6),C(1,1,5)若|a|,且a分别与,垂直,则向量a为_2若,则直线AB与平面CDE的位置关系是_3设a(1,2,0),b(1,0,1),则“c”是“ca,cb且c为单位向量”的_条件4. 如图,在长方体ABCDA1B1C1D1中,AB2,AA1,AD2,P为C1D1的中点,M为BC的中点则AM与PM的位置关系为_(填“平行”、“垂直”、“异面”)5. 如图,正方形ABCD与矩形ACEF所在平面互相垂直,AB,AF1,M在EF上,且AM平面BDE.则M点的坐标为_6已知平面和平面的法向量分别为a(1,1,2),b(x,2,3),且,则x_.7已知平面内的三点A(0,0,1),B(0,1,0),C(1,0,0),平面的一个法向量n(1,1,1)则不重合的两个平面与的位置关系是_8已知点P是平行四边形ABCD所在的平面外一点,如果(2,1,4),(4,2,0),(1,2,1)对于结论:APAB;APAD;是平面ABCD的法向量;.其中正确的是_二、解答题9. 如图所示,平面PAD平面ABCD,ABCD为正方形,PAD是直角三角形,且PAAD2,E,F,G分别是线段PA,PD,CD的中点求证:PB平面EFG. 10. 如图所示,在四棱锥PABCD中,PC平面ABCD,PC2,在四边形ABCD中,BC90,AB4,CD1,点M在PB上,PB4PM,PB与平面ABCD成30的角 (1)求证:CM平面PAD;(2)求证:平面PAB平面PAD.能力提升题组(建议用时:25分钟)一、填空题1已知(1,5,2),(3,1,z),若,(x1,y,3),且BP平面ABC,则xy的值为_2. 如图所示,在平行六面体ABCDA1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,若平行六面体的各棱长均相等,则A1MD1P;A1MB1Q;A1M平面DCC1D1;A1M平面D1PQB1.以上正确说法的序号为_ 3. 如图,正方体ABCDA1B1C1D1的棱长为1,E,F分别是棱BC,DD1上的点,如果B1E平面ABF,则CE与DF的和的值为_ 二、解答题4在四棱锥PABCD中,PD底面ABCD,底面ABCD为正方形,PDDC,E,F分别是AB,PB的中点(1)求证:EFCD;(2)在平面PAD内求一点G,使GF平面PCB,并证明你的结论 第6讲立体几何中的向量方法(一)证明平行与垂直参考答案基础巩固题组(建议用时:40分钟)一、填空题1解析由条件知(2,1,3),(1,3,2),设a(x,y,z)则有解可得a(1,1,1)答案(1,1,1)或(1,1,1)2解析,共面则AB与平面CDE的位置关系是平行或在平面内答案平行或在平面内3解析当c时,ca,cb且c为单位向量,反之则不成立答案充分不必要4. 解析以D点为原点,分别以DA,DC,DD1所在直线为x,y,z轴,建立如图所示的空间直角坐标系Dxyz,依题意,可得,D(0,0,0),P(0,1,),C(0,2,0),A(2,0,0),M(,2,0)(,2,0)(0,1,)(,1,),(,2,0)(2,0,0)(,2,0),(,1,)(,2,0)0,即,AMPM. 答案垂直5. 解析连接OE,由AM平面BDE,且AM平面ACEF,平面ACEF平面BDEOE,AMEO,又O是正方形ABCD对角线交点,M为线段EF的中点在空间坐标系中,E(0,0,1),F(,1)由中点坐标公式,知点M的坐标.答案6解析,abx260,则x4.答案47解析(0,1,1),(1,0,1),n0,n0,n,n,故n也是的一个法向量又与不重合,.答案平行8解析0,0,ABAP,ADAP,则正确又与不平行,是平面ABCD的法向量,则正确由于(2,3,4),(1,2,1),与不平行,故错误答案二、解答题9. 证明平面PAD平面ABCD且ABCD为正方形,AB,AP,AD两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0)(2,0,2),(0,1,0),(1,1,1),设st,即(2,0,2)s(0,1,0)t(1,1,1),解得st2.22,又与不共线,与共面PB平面EFG,PB平面EFG.10. 证明以C为坐标原点,CB所在直线为x轴,CD所在直线为y轴,CP所在直线为z轴建立如图所示的空间直角坐标系Cxyz. PC平面ABCD,PBC为PB与平面ABCD所成的角,PBC30.PC2,BC2,PB4.D(0,1,0),B(2,0,0),A(2,4,0),P(0,0,2),M,(0,1,2),(2,3,0),(1)设n(x,y,z)为平面PAD的一个法向量,则即令y2,得n(,2,1)n2010,n,又CM平面PAD,CM平面PAD.(2)取AP的中点E,并连接BE,则E(,2,1),(,2,1),PBAB,BEPA.又(,2,1)(2,3,0)0,则BEDA.PADAA.BE平面PAD,又BE平面PAB,平面PAB平面PAD.能力提升题组(建议用时:25分钟)一、填空题1解析,0,即352z0,得z4,又BP平面ABC,则解得x,y.于是xy.答案2. 解析,所以A1MD1P,由线面平行的判定定理可知,A1M面DCC1D1,A1M面D1PQB1.正确答案4. 解析以D1A1,D1C1,D1D分别为x,y,z轴建立空间直角坐标系,设CEx,DFy,则易知E(x,1,1),B1(1,1,0),F(0,0,1y),B(1,1,1),(x1,0,1),(1,1,y),由于B1E平面ABF,所以(1,1,y)(x1,0,1)0xy1.答案1二、解答题4(1)证明如图,以DA,DC,DP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,设ADa, 则D(0,0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年保密考试题及答案
- 2025年希腊历史高考真题及答案
- 浙江省防尘专项施工方案
- 临海市绿篱养护施工方案
- 催肥产品定制方案范本
- 2025电梯维修工程合同书
- 门面街道改造方案范本
- 保护性拆除门窗施工方案
- 2025销售合同协议范本
- 青海教师考试试题及答案
- 精神病人福利院建设项目建议书
- 2025-2030中国N-甲基苯胺市场深度调查与前景预测分析报告
- 2025至2030年中国洗护用品行业市场行情监测及前景战略研判报告
- aeo认证管理制度
- 无人机操控与维护专业教学标准(中等职业教育)2025修订
- 食品新产品开发设计案例
- 干洗店用人合同协议书
- 2025年内蒙古鄂尔多斯市国源矿业开发有限责任公司招聘笔试参考题库含答案解析
- 应届生校招:管理培训生笔试试题及答案
- AI+汽车智能化系列之十一:以地平线为例探究第三方智驾供应商核心竞争力
- 新概念英语第二册课后答案全部超级详细的哦
评论
0/150
提交评论