【教育专用】2019年人教版高三数学专题复习:应用题Word版.doc_第1页
【教育专用】2019年人教版高三数学专题复习:应用题Word版.doc_第2页
【教育专用】2019年人教版高三数学专题复习:应用题Word版.doc_第3页
【教育专用】2019年人教版高三数学专题复习:应用题Word版.doc_第4页
【教育专用】2019年人教版高三数学专题复习:应用题Word版.doc_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

教育学习+K12高三数学专题复习应用题(附参考答案)【考点概述】数学应用性问题是历年高考命题的主要题型之一,也是考生失分较多的一种题型。解答这类问题的要害是深刻理解题意,学会文字语言向数学的符号语言的翻译转化,这就需要建立恰当的数学模型,这当中,函数,数列,三角是较为常见的模型,而立几,不等式,解几等模型也应在复习时引起重视。高考应用性问题的热门话题是增减比率型和方案优化型,另外,估测计算型和信息迁移型也时有出现。当然,数学高考应用性问题关注当前国内外的政治,经济,文化,紧扣时代的主旋律,凸显了学科综合的特色。【求解应用题的一般步骤】1、审清题意:认真分析题目所给的有关材料,弄清题意,理顺问题中的条件和结论,找到关键量,进而明确其中的数量关系(等量或大小关系)2、建立文字数量关系式:把问题中所包含的关系可先用文字语言描述关键量之间的数量关系,这是问题解决的一把钥匙。3、转化为数学模型:将文字语言所表达的数量关系转化为数学语言,建立相应的数学模型(一般要列出函数式、三角式、不等式、数列、排列组合式、概率以及利用几何图形等进行分析),转化为一个数学问题。4、解决数学问题:利用所学数学知识解决转化后的数学问题,得到相应的数学结论。5、返本还原:把所得到的关于应用问题的数学结论,还原为实际问题本身所具有的意义。【常见类型】类型一:函数应用题1.1 以分式函数为载体的函数应用题例1. 工厂生产某种产品,次品率p与日产量x(万件)间的关系为:(c为常数, 且0c6). 已知每生产1件合格产品盈利3元,每出现1件次品亏损1.5元.(1)将日盈利额y(万元)表示为日产量x(万件)的函数;(2)为使日盈利额最大,日产量应为多少万件?(注:次品率100%)【解】(1)若,则, 若,则 , (2)当,则若,则,函数在上为增函数, 若,在上为增函数,在上为减函数,当时,. 综上,若,则当日产量为c万件时,日盈利额最大;若,则当日产量为3万件时,日盈利额最大. 1.2以分段函数为载体的函数应用题例2. 在等边中,=6cm,长为1cm的线段两端点都在边上,且由点向点运动(运动前点与点重合),,点在边或边上;,点在边或边上,设. (1)若面积为,由围成的平面图形面积为,分别求出函数的表达式;(2)若四边形为矩形时,求当时, 设,求函数的取值范围 .解:(1) 当时,F在边AC上,;当时,F在边BC上, ,, 当时,F、G都在边AC上,;当时,F在边AC上,G在边BC上, ;当时,F、G都在边BC上, . (2) 当时, 当时,例3将一张长8cm,宽6cm的长方形的纸片沿着一条直线折叠,折痕(线段)将纸片分成两部分,面积分别为S1cm2,S2cm2,其中S1S2记折痕长为lcm(1)若l4,求S1的最大值;(2)若S1S212,求l的取值范围解 如图所示,不妨设纸片为长方形ABCD,AB8cm,AD6cm,其中点A在面积为S1的部分内折痕有下列三种情形:折痕的端点M,N分别在边AB,AD上;折痕的端点M,N分别在边AB,CD上;ABCD(情形)MNABCD(情形)MNABCD(情形)MN折痕的端点M,N分别在边AD,BC上(1)在情形、中MN6,故当l4时,折痕必定是情形设AMxcm,ANycm,则x2y216 2分因为x2y22xy,当且仅当xy时取等号,所以S1xy4,当且仅当xy2时取等号即S1的最大值为4 5分(2)由题意知,长方形的面积为S6848 因为S1S212,S1S2,所以S116,S232 当折痕是情形时,设AMxcm,ANycm,则xy16,即y由得x8所以l,x8 8分设f(x)x2,x0,则f (x)2x,x0故x(,4)4(4,8)8f (x)0f(x)646480所以f(x)的取值范围为64,80,从而l的范围是8,4; 11分当折痕是情形时,设AMxcm,DNycm,则(xy)616,即yx由得0x所以l,0x所以l的范围为6,; 13分当折痕是情形时,设BNxcm,AMycm,则(xy)816,即y4x由得0x4所以l,0x4所以l的取值范围为8,4综上,l的取值范围为6,4 16分例4. 如图,长方体物体在雨中沿面(面积为)的垂直方向作匀速移动,速度为v(v0),雨速沿移动方向的分速度为,移动时单位时间内的淋雨量包括两部分:(1)或的平行面(只有一个面淋雨)的淋雨量,假设其值与S成正比,比例系数为1;(2)其他面的淋雨量之和,其值为. 记为移动过程中的总淋雨量,当移动距离,面积S=.(1)写出的表达式;(2)设0v10,0c5,试根据的不同取值范围,确定移动速度,使总淋雨量最少.解:()由题意知,移动时单位时间内的淋雨量为,故()由()知,当时,;当时,故(1)当时,是关于的减函数故当时,(2)当时,在上,是关于的减函数;在上,是关于的增函数故当时,例5. 如图所示的自动通风设施该设施的下部ABCD是等腰梯形,其中AB=1米,高0.5米,CD=2a(a)米上部CmD是个半圆,固定点E为CD的中点EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和CD平行的伸缩横杆(1)设MN与AB之间的距离为x米,试将三角通风窗EMN的通风面积S(平方米)表示成关于x的函数;CABMNDEmmABCDEMN(第19题)(2)当MN与AB之间的距离为多少米时,三角通风窗EMN的通风面积最大?并求出这个最大面积解:(1)(一)时,由平面几何知识,得, 3分(二) 时,5分(2) (一)时,当时,当时,7分(二)时, ,等号成立 时,10分A时,时当,时,当,12分B时,当时,14分综上,时,当时,即MN与AB之间的距离为0米时,三角通风窗EMN的通风面积最大,最大面积为平方米时,当时, 即与之间的距离为米时,三角通风窗EMN的通风面积最大,最大面积为平方米16分1.3 以二次函数为载体的函数应用题例6. 轮滑是穿着带滚轮的特制鞋在坚硬的场地上滑行的运动如图,助跑道ABC是一段抛物线,某轮滑运动员通过助跑道获取速度后飞离跑道然后落到离地面高为1米的平台上E处,飞行的轨迹是一段抛物线CDE(抛物线CDE与抛物线ABC在同一平面内),D为这段抛物线的最高点现在运动员的滑行轨迹所在平面上建立如图所示的直角坐标系,轴在地面上,助跑道一端点A(0,4),另一端点C(3,1),点B(2,0),单位:米(1)求助跑道所在的抛物线方程;(2)若助跑道所在抛物线与飞行轨迹所在抛物线在点C处有相同的切线,为使运动员安全和空中姿态优美,要求运动员的飞行距离在4米到6米之间(包括4米和6米),试求运动员飞行过程中距离平台最大高度的取值范围?(注:飞行距离指点C与点E的水平距离,即这两点横坐标差的绝对值)【解】(1)设助跑道所在的抛物线方程为,依题意: 解得,助跑道所在的抛物线方程为 (2)设飞行轨迹所在抛物线为(),依题意:得解得,令得,当时,有最大值为,则运动员的飞行距离, 飞行过程中距离平台最大高度,依题意,得,即飞行过程中距离平台最大高度的取值范围为在2米到3米之间例7. 某单位有员工1000名,平均每人每年创造利润10万元为了增加企业竞争力,决定优化产业结构,调整出x (x)名员工从事第三产业,调整后他们平均每人每年创造利润为万元(a0),剩下的员工平均每人每年创造的利润可以提高0.2x%(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)在(1)的条件下,若调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则a的取值范围是多少?【解】(1)由题意,得10(1000x)(10.2x %)101000,即500x0,又x0,所以0x500即最多调整500名员工从事第三产业(2)从事第三产业的员工创造的年总利润为万元,从事原来产业的员工的年总利润为万元,则,所以ax10002xx,所以ax1000x,即a1恒成立因为4,当且仅当,即x500时等号成立,所以a5,又a0,所以0a5所以a的取值范围为(0,类型二:三角测量应用题2.1以三角函数的定义为载体的三角应用题A OZ OZ CZ BZ 1 2 x y 例8. 如图,两个圆形飞轮通过皮带传动,大飞轮的半径为(为常数),小飞轮的半径为,.在大飞轮的边缘上有两个点,满足,在小飞轮的边缘上有点设大飞轮逆时针旋转一圈,传动开始时,点,在水平直线上m(1)求点到达最高点时,间的距离;(2)求点,在传动过程中高度差的最大值. 【解】(1)以为坐标系的原点,所在直线为轴,如图所示建立直角坐标系当点A到达最高点时,点A绕O1转过,则点C绕O2转过 此时A(0,2r),C (2)由题意,设大飞轮转过的角度为,则小飞轮转过的角度为2,其中此时B(2r,2r),C(4r + r,r)记点高度差为,则即设,则 令,得或1则,0或2 列表:02+0-0+0极大值f()极小值f()0当 =时,f()取得极大值为;当 =时,f()取得极小值为答:点B,C在传动中高度差的最大值 2.2以三角函数的图象为载体的三角应用题例9. 如图,摩天轮的半径为,点距地面的高度为,摩天轮做匀速转动,每转一圈,摩天轮上的点的起始位置在最低点处.(1)试确定在时刻时点距离地面的高度;(2)在摩天轮转动的一圈内,有多长时间点距离地面超过?(3)求证:不论为何值,是定值.2.3以直角三角形为载体的三角应用题例10ABCDP1P0P2P3P4(第18题)如图,矩形ABCD中,AB=3,AD=2,一质点从AB边上的点出发,沿与AB的夹角为q 的方向射到边BC上点后,依次反射(入射角与反射角相等)到边CD,DA和AB上的处(1)若P4与P0重合,求的值;(2)若P4落在A、P0两点之间,且AP0=2设=t,将五边形P0P1P2P3P4的面积S表示为t的函数,并求S的最大值解 :(1)设,则,2分=,4分, 6分由于与重合,所以,即 8分(2)由(1),可知因为P4落在A、P0两点之间,所以,即10分S=S四边形ABCD 14分由于,所以故S的最大值为 16分例11. 如图所示,直立在地面上的两根钢管AB和CD,m,m,现用钢丝绳对这两根钢管进行加固,有两种方法:(1)如图(1)设两根钢管相距1m,在AB上取一点E,以C为支点将钢丝绳拉直并固定在地面的F处,形成一个直线型的加固(图中虚线所示)则BE多长时钢丝绳最短?(2)如图(2)设两根钢管相距m,在AB上取一点E,以C为支点将钢丝绳拉直并固定在地面的F 处,再将钢丝绳依次固定在D处、B处和E处,形成一个三角形型的加固(图中虚线所示)则BE 多长时钢丝绳最短?AEDCBFAEDCBF图1图2【解】(1)设钢丝绳长为ym,则(其中,),当时,即时,(2)设钢丝绳长为ym,则(其中,)9分令得,当时,即时12分例12. 如图,将边长为3的正方形ABCD绕中心O顺时针旋转a (0a)得到正方形ABCD根据平面几何知识,有以下两个结论:AFEa;对任意a (0a),EAL,EAF,GBF,GBH,ICH,ICJ,KDJ,KDL均是全等三角形(1)设AEx,将x表示为a的函数;(2)试确定a,使正方形ABCD与正方形ABCD重叠部分面积最小,并求最小面积【解】(1)在RtEAF中,因为AFEa,AEx,所以EF,AF 由题意AEAEx,BFAF,所以ABAEEFBFx3所以x,a(0,) (2)SAEFAEAFx()2 令tsinacosa,则sinacosa 因为a(0,),所以a(,),所以tsin(a)(1, SAEF(1)(1) 正方形ABCD与正方形ABCD重叠部分面积 SS正方形ABCD4SAEF99 (1)18(1) 当t,即a时等号成立2.4以解三角形为载体的三角应用题例13某运输装置如图所示,其中钢结构是,的固定装置,AB上可滑动的点C使垂直于底面(不与重合),且可伸缩(当CD伸缩时,装置ABD随之绕D在同一平面内旋转),利用该运输装置可以将货物从地面处沿运送至处,货物从处至处运行速度为,从处至处运行速度为为了使运送货物的时间最短,需在运送前调整运输装置中的大小. (1)当变化时,试将货物运行的时间表示成的函数(用含有和的式子);(2)当最小时,点应设计在的什么位置?18.解:(1)在中, 4分,则, 8分(2) 10分令,则 12分令得,设 ,则时,;时时有最小值,此时. 14分答:当时货物运行时间最短. 15分 例14如图,摄影爱好者S在某公园A处,发现正前方B处有一立柱,测得立柱顶端O的仰角和立柱底部B的俯角均为设S的眼睛距地面的距离按米 (1) 求摄影者到立柱的水平距离和立柱的高度; (2) 立柱的顶端有一长2米的彩杆MN绕其中点O在S与立柱所在的平面内旋转摄影者有一视角范围为的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由解 (1) 如图,作SC垂直OB于C,则CSB30,ASB60又SA,故在RtSAB中,可求得BA3,即摄影者到立柱的水平距离为3米 由SC3,CSO30,在RtSCO中,可求得OC 因为BCSA,故OB2,即立柱高为2米. (2) 方法一:连结SM,SN,设ONa,OMb在SON和SOM中,得a2b226cosMSN 又MSN(0,), 则MSN故摄影者可以将彩杆全部摄入画面 方法二提示:设MOS,建立cosMSN关于的关系式,求出cosMSN最小值为,从而得到MSN方法三提示:假设MSN,设ONa,OMb,联立a2b226和a2b2ab4消元,判断方程是否有解方法四提示:计算过S点作圆O(1为半径)的两切线夹角大于60o也可合理建系【说明】第(1)问主要考查了对图形的认识;第(2)问突出应用题中变量的选择,方法的选择另外应用题中除求解函数最值问题外,也考虑涉及方程的解、不等式等问题,如方法三2.5以圆(或圆弧)为载体的三角应用题例15某园林公司计划在一块为圆心,为常数,单位为米为半径的半圆形(如图)地上种植花草树木,其中弓形区域用于观赏样板地,区域用于种植花木出售,其余区域用于种植草皮出售已知观赏样板地的成本是每平方米2元,花木的利润是每平方米8元,草皮的利润是每平方米3元(1)设(单位:弧度),用表示弓形的面积;第17题(2)园林公司应该怎样规划这块土地,才能使总利润最大? 并求相对应的的值解:(1),, (2)设总利润为元,草皮利润为元,花木地利润为,观赏样板地成本为,, 设 上为减函数; 上为增函数 当时,取到最小值,此时总利润最大 13分答:所以当园林公司把扇形的圆心角设计成时,总利润最大. 14分2.6 以立体几何为载体的三角应用题例16. 某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且假设该容器的建造费用仅与其表面积有关已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为千元,设该容器的建造费用为千元(1)写出关于的函数表达式,并求该函数的定义域;(2)求该容器的建造费用最小时的【解】(I)设容器的容积为V,由题意知故由于,因此所以建造费用因此(2)由(1)得由于当令,所以 (1)当时,易得是函数y的极小值点,也是最小值点。 (2)当即时,当函数单调递减,所以r=2是函数y的最小值点,综上所述,当时,建造费用最小时当时,建造费用最小时例17. 某部门要设计一种如图所示的灯架,用来安装球心为,半径为R(米)的球形灯泡该灯架由灯托、灯杆、灯脚三个部件组成,其中圆弧形灯托所在圆的圆心都是、半径都是R(米)、圆弧的圆心角都是(弧度);灯杆EF垂直于地面,杆顶E到地面的距离为h(米),且;灯脚FA1,FB1,FC1,FD1是正四棱锥F - A1B1C1D1的四条侧棱,正方形A1B1C1D1的外接圆半径为R(米),四条灯脚与灯杆所在直线的夹角都为(弧度)已知灯杆、灯脚造价都是每米(元),灯托造价是每米(元),其中都为常数设该灯架的总造价为(元)O AB C DE F A1 DC B1 1 1 (1)求关于的函数关系式;(2)当取何值时,取得最小值?【解】(1)延长与地面交于,由题意:,且, 从而, ., 设 ,令 . 当时,;时,设,其中,. ,时,最小. 答:当时,灯架造价取得最小值. 例18. 要制作一个由同底圆锥和圆柱组成的储油罐(如图),设计要求:圆锥和圆柱的总高度和圆柱底面半径相等,都为米.市场上,圆柱侧面用料单价为每平方米元,圆锥侧面用料单价分别是圆柱侧面用料单价和圆柱底面用料单价的4倍和2倍.设圆锥母线和底面所成角为(弧度),总费用为(元).(1)写出的取值范围;(2)将表示成的函数关系式;(3)当为何值时,总费用最小?【解】设圆锥的高为米,母线长为米,圆柱的高为米;圆柱的侧面用料单价为每平方米2元,圆锥的侧面用料单价为每平方米4元. (1) (2)圆锥的侧面用料费用为,圆柱的侧面费用为,圆柱的地面费用为, 则 =, =. (3)设,其中则, 当时,当时,当时,则当时,取得最小值,则当时,费用最小. 例19某商场为促销要准备一些正三棱锥形状的装饰品,用半径为10cm的圆形包装纸包装要求如下:正三棱锥的底面中心与包装纸的圆心重合,包装纸不能裁剪,沿底边向上翻折,其边缘恰好达到三棱锥的顶点,如图所示设正三棱锥的底面边长为xcm,体积为Vcm3在所有能用这种包装纸包装的正三棱锥装饰品中,V的最大值是多少?并求此时x的值(第17题图)图解析:正三棱锥展开如图所示当按照底边包装时体积最大 设正三棱锥侧面的高为h,高为h 由题意得:xh10,解得h10x 则h ,x(0,10) 所以,正三棱锥体积VShx2 设yV2(100x), 求导得y ,令y0,得x8, 当x(0,8)时,y0,y随着x的增加而增大,当x(8,10)时,y0,y随着x的增加而减小, 所以,当x8 cm时,y取得极大值也是最大值 此时y15360,所以Vmax32 cm3答:当底面边长为8cm时,正三棱锥的最大体积为32cm3 2.7以追击问题为载体的三角应用题例20 . 如图,是沿太湖南北方向道路,为太湖中观光岛屿, 为停车场,km某旅游团游览完岛屿后,乘游船回停车场Q,已知游船以km/h的速度沿方位角的方向行驶, 游船离开观光岛屿3分钟后,因事耽搁没有来得及登上游船的游客甲为了及时赶到停车地点与旅游团会合,立即决定租用小船先到达湖滨大道M处,然后乘出租汽车到点Q(设游客甲到达湖滨大道后能立即乘到出租车)假设游客甲乘小船行驶的方位角是,出租汽车的速度为66km/h(1)设,问小船的速度为多少km/h时,游客甲才能和游船同时到达点Q;(2)设小船速度为10km/h,请你替该游客设计小船行驶的方位角,当角余弦值的大小是多少时,游客甲能按计划以最短时间到达【解】(1) 如图,作,为垂足,在中,(km), =(km)在中,(km) 设游船从P到Q所用时间为h,游客甲从经到所用时间为h,小船的速度为 km/h,则 (h),(h) 由已知:,小船速度为km/h,游客甲和游船同时到达 (2)在中,(km),(km)(km) , 令得:当时,;当时,在上是减函数,当方位角满足时,t最小,即游客甲能按计划以最短时间到达例21. 已知岛南偏东方向,距岛海里的处有一缉私艇,一艘走私船正从处以海里每小时的航速沿正东方向匀速行驶. 假设缉私艇沿直线方向以海里每小时的航速匀速行驶,经过小时截住该走私船. (1)为保证缉私艇在30分钟内(含30分钟)截住该走私船,试确定缉私艇航行速度的最小值;(2)是否存在,使得缉私艇以海里每小时的航行速度行驶,总能有两种不同的航行方向截住该走私船?若存在,试确定的取值范围;若不存在,请说明理由. 【解】(1)最小速度为海里每小时;(2)2.8以米勒问题为载体的三角应用题 例22. 如图,有一壁画,最高点处离地面,最低点处离地面.若从离地高的处观赏它,则离墙多远时,视角最大?例23. 某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角ABE=,ADE=(1)该小组已经测得一组、的值,tan=1.24,tan=1.20,请据此算出H的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使与之差较大,可以提高测量精确度若电视塔的实际高度为125m,试问d为多少时,-最大?类型三:数列应用题 例24. 在金融危机中,某钢材公司积压了部分圆钢,经清理知共有2009根.现将它们堆放在一起.(1)若堆放成纵断面为正三角形(每一层的根数比上一层根数多1根),并使剩余的圆钢尽可能地少,则剩余了多少根圆钢?(2)若堆成纵断面为等腰梯形(每一层的根数比上一层根数多1根),且不少于七层,()共有几种不同的方案?()已知每根圆钢的直径为10cm,为考虑安全隐患,堆放高度不得高于4m,则选择哪个方案,最能节省堆放场地?【解】(1)当纵断面为正三角形时,设共堆放层,则从上到下每层圆钢根数是以1为首项、1为公差的等差数列,且剩余的圆钢一定小于根,从而由且得,当时,使剩余的圆钢尽可能地少,此时剩余了56根圆钢;(2)()当纵断面为等腰梯形时,设共堆放层,则从上到下每层圆钢根数是以为首项、1为公差的等差数列,从而,即,因与的奇偶性不同,所以与的奇偶性也不同,且,从而由上述等式得:或或或,共有4种方案可供选择.()因层数越多,最下层堆放得越少,占用面积也越少,所以由(2)可知:若,则,说明最上层有29根圆钢,最下层有69根圆钢,此时如图所示,两腰之长为400 cm,上下底之长为280 cm和680cm,从而梯形之高为 cm,而,所以符合条件;若,则,说明最上层有17根圆钢,最下层有65根圆钢,此时如图所示,两腰之长为480 cm,上下底之长为160 cm和640cm,从而梯形之高为 cm,显然大于4m,不合条件,舍去;综上所述,选择堆放41层这个方案,最能节省堆放场地.高考 例25. 某啤酒厂为适应市场需要,2011年起引进葡萄酒生产线,同时生产啤酒和葡萄酒,2011年啤酒生产量为16000吨,葡萄酒生产量1000吨该厂计划从2012年起每年啤酒的生产量比上一年减少50%,葡萄酒生产量比上一年增加100%,试问:(1)哪一年啤酒与葡萄酒的年生产量之和最低?(2)从2011年起(包括2011年),经过多少年葡萄酒的生产总量不低于该厂啤酒与葡萄酒生产总量之和的?(生产总量是指各年年产量之和)【解】设从2011年起,该车第年啤酒和葡萄酒年生产量分别为吨和吨,经过年后啤酒和葡萄酒各年生产量的总量分别为吨和吨(1)设第年啤酒和葡萄酒生产的年生产量为吨,根据题意,得=,=,(),则=+=,当且仅当,即时取等号, 故年啤酒和葡萄酒生产的年生产量最低,为吨(2)依题意,得,答:从第6年起,葡萄酒各年生产的总量不低于啤酒各年生产总量与葡萄酒各年生产总量之和的 类型四:线性规划应用题例26. 某公司计划2010年在甲、乙两个电视台做广告总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?【解】设公司在甲电视台和乙电视台做广告的时间分别为分钟和分钟,总收益为元,由题意得,即,目标函数为,作出二元一次不等式所表示的平面区域,即可行域如图,作直线,即平移直线,从图中可知,当直线过点时,目标函数取得最大值联立方程解得点的坐标为(元)答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元 类型五:解析几何应用题例27. 如图,、是通过某城市开发区中心的两条南北和东西走向的街道,连接、两地之间的铁路线是圆心在上的一段圆弧若点在点正北方向,且,点到、的距离分别为和(1)建立适当坐标系,求铁路线所在圆弧的方程;(2)若该城市的某中学拟在点正东方向选址建分校,考虑环境问题,要求校址到点的距离大于,并且铁路线上任意一点到校址的距离不能少于,求该校址距点的最近距离(注:校址视为一个点).解:()分别以、为轴,轴建立如图坐标系据题意得, 线段的垂直平分线方程为:),故圆心A的坐标为(4,0), , 弧的方程:(0x4,y3)8分()设校址选在B(a,0)(a4),整理得:,对0x4恒成立() 令a4 在0,4上为减函数要使()恒成立,当且仅当 ,即校址选在距最近5km的地方14分例28. 某人欲设计一个如图所示的“蝴蝶形图案(阴影区域)”其中是过抛物线焦点且互相垂直的两条弦,该抛物线的对称轴为,通径长为4记,为锐角(通径:经过抛物线焦点且垂直于对称轴的弦)(1)用表示的长;(2)试建立“蝴蝶形图案”的面积关于的函数关系式,并设计的大小,使“蝴蝶形图案”的面积最小【解】(1)由抛物线的定义知,解得,(2)据(1)同理可得,所以“蝴蝶形图案”的面积, 即, 令,则,所以当,即时,的最小值为8 答:当时,可使“蝴蝶形图案”的面积最小 例29. 如图,某隧道设计为双向四车道,车道总宽22米,要求通行车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个椭圆形状.(1)若最大拱高h为6米,则隧道设计的拱宽l是多少?(2)若最大拱高h不小于6米,则应如何设计拱高h和拱宽l,才能使半个椭圆形隧 道的土方工程量最小?(半个椭圆的面积公式为)【解】(1)如图建立直角坐标系,则点,椭圆方程为.将b=h=6与点P坐标代入椭圆方程,得此时.因此隧道的拱宽约为33.3米.(2)由椭圆方程,得因为即且所以当取最小值时,有得此时故当拱高约为6.4米、拱宽约为31.1米时,土方工程量最小.例30. 如图所示,有两条道路与,现要铺设三条下水管道,(其中,分别在,上),若下水管道的总长度为,设,(1)求关于的函数表达式,并指出的取值范围;(2)已知点处有一个污水总管的接口,点到的距离为,到点的距离为,问下水管道能否经过污水总管的接口点?若能,求出的值,若不能,请说明理由170 m60 m东北OABMC例31.如图,为了保护河上古桥,规划建一座新桥BC,同时设立一个圆形保护区.规划要求: 新桥BC与河岸AB垂直; 保护区的边界为圆心M在线段OA上并与BC相切的圆.且古桥两端O和A到该圆上任意一点的距离均不少于80m. 经测量,点A位于点O正北方向60m处, 点C位于点O正东方向170m处(OC为河岸),.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?【解法探究】(1)解法1:(两角差的正切)连结,由题意知,则由两角差的正切公式可得:,故答:新桥的长度为m.解法2:(解析法)由题意可知;由 可知直线的斜率,则直线所在直线的方程为;又由可知,所在的直线方程为;联立方程组,解得;即点,那么. 答:新桥的长度为m.解法3:(初中解法)延长交所在直线于点,由可得,故,在中,由勾股定理得,故答:新桥的长度为m.(2)解法1:(解析法) 由题意设,圆的方程为,且由题意可知. 又古桥两端O和A到该圆上任意一点的距离均不少于80m,那么,解得;由函数为区间上的减函数,故当时,半径取到最大值为.综上可知,当时,圆形保护区的面积最大,且最大值为.解法2:(初中解法)设与圆切于点,连接,过点作交于点.设,则,由古桥两端O和A到该圆上任意一点的距离均不少于80 m,那么,解得. 由,可得,由(1)解法3可得,所以,故即圆的半径的最大值为130,当且仅当时取得半径的最大值. 综上可知,当时,圆形保护区的面积最大. 类型六:排列组合、统计与概率型应用题例32. 田忌和齐王赛马是历史上有名的故事. 设齐王的3匹马分别为A、B、C,田忌的3匹马分别为a,b,c,6匹马的奔跑速度由快到慢的顺序依次为:A,a,B,b,C,c. 两人约定:6匹马均需参赛,共赛3场,每场比赛双方各出1匹马,最终至少胜两场者为获胜. (1)如果双方均不知道对方的出马顺序,求田忌获胜的概率; (2)颇有心计的田忌赛前派探子到齐王处打探实情,得知齐王第一场必出A马. 那么,田忌应怎样安排马的出场顺序,才能使获胜的概率最大?【解】记A与a比赛为(A,a),其它同理(l)(方法1)齐王与田忌赛马,有如下6种情况:(A,a),(B,b),(C,c);(A,a),(B,c),(C,b);(A,b),(B,c),(C,a);(A,b),(B,a),(C,c);(A,c),(B,a),(C,b);(A,c),(B,b),(C,a). 2分其中田忌获胜的只有一种:(A,c),(B,a),(C,b). 4分故田忌获胜的概率为. 7分(方法2)齐王与田忌赛马对局有6种可能:A B Ca b ca c bb a c b c a c a bc b a 2分 其中田忌获胜的只有一种:(A,c),(B,a),(C,b). 4分若齐王出马顺序还有ACB , BAC , BCA,CAB,CBA等五种;每种田忌有一种可以获胜故田忌获胜的概率为 7分 (2)已知齐王第一场必出上等马A,若田忌第一场必出上等马a或中等马b,则剩下二场,田忌至少输一场,这时田忌必败为了使自己获胜的概率最大,田忌第一场应出下等马c9分后两场有两种情形:若齐王第二场派出中等马B,可能的对阵为:(B,a),(C,b)或(B,b),(C,a)田忌获胜的概率为. 11分若齐王第二场派出下等马C,可能的对阵为:(C,a),(B,b)或(C,b),(B,a)田忌获胜的概率也为 13分所以,田忌按c , a , b或c , b , a的顺序出马,才能使自己获胜的概率达到最大 14分答:(l)田忌获胜的概率(2)田忌按c , a , b或c , b , a的顺序出马,才能使获胜的概率达到最大为 15分【应用题的常见题型及对策总结】1、与函数、方程(组)、不等式(组)有关的题型 常涉及物价、路程、产值、环保、土地等实际问题,也常常涉及角度、长度、面积、造价、利润等最优化问题。解决这类问题一般要利用数量关系,列出有关解析式,然后运用函数、方程、不等式等有关知识和方法加以解决,尤其对函数最值、均值定理用得较多。2、与正、余弦定理及三角变换有关的题型常涉及实地测量、计算山高、河宽、最大视角等。3、与空间图形有关的问题常与空间观测、面积、体积、地球的经纬度等问题有关。解决此类问题常利用立体几何、三角方面的有关知识。4、与数列有关的问题常涉及到产量、产值、繁殖、利息、物价、增长率

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论