




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角函数训练题一、选择题1 已知sin,sin20,则tan等于( )A BC或 D2 已知、均为锐角,若P:sinsin(),q:0,对于函数,下列结论正确的是( D)A有最大值而无最小值B有最小值而无最大值C有最大值且有最小值D既无最大值又无最小值二、填空题1在ABC中,角A、B、C所对的边分别是、,若, ,由= 2已知函数y=tanx在内是减函数,则的取值范围是 .3已sin(x),则sin2x的值为 。4的图象与直线yk有且仅有两个不同交点,则k的取值范围是 5函数的最小正周期 6函数的最小值是_7. 若,,,则的值等于 8.在中, ,则_ .9. 若x(0, )则2tanx+tan(-x)的最小值为 _ . 10.下面有五个命题:函数y=sin4x-cos4x的最小正周期是.终边在y轴上的角的集合是a|a=|.在同一坐标系中,函数y=sinx的图象和函数y=x的图象有三个公共点.把函数函数其中真命题的序号是 (写出所言 )答案: 三、解答题1已知函数。(1)求的最小正周期、的最大值及此时x的集合;(2)证明:函数的图像关于直线对称。2已知向量,(1) 求的值;(2) (2)若的值。3已知函数(其中)(I)求函数的值域; (II)若函数的图象与直线的两个相邻交点间的距离为,求函数的单调增区间4 已知函数y=cos2x+sinxcosx+1 (xR),(1)当函数y取得最大值时,求自变量x的集合;(2)该函数的图像可由y=sinx(xR)的图像经过怎样的平移和伸缩变换得到?5在中,a、b、c分别是角A、B、C的对边,且,(1)求的值;(2)若,且a=c,求的面积。6.设函数f(x)=cos(2x+)+sinx.(1)求函数f(x)的最大值和最小正周期.(2)设A,B,C为ABC的三个内角,若cosB=,且C为锐角,求sinA.7. 在ABC中,, sinB=.(I)求sinA的值;(II)设AC=,求ABC的面积.8已知函数,的最大值是1,其图像经过点(1)求的解析式;(2)已知,且,求的值9已知函数,(I)求的最大值和最小值;(II)若不等式在上恒成立,求实数的取值范围10已知函数,(I)设是函数图象的一条对称轴,求的值(II)求函数的单调递增区间 参考答案一、选择题ABADC AACBD二、填空题三、解答题1、解: (1)所以的最小正周期,因为,所以,当,即时,最大值为;(2)证明:欲证明函数的图像关于直线对称,只要证明对任意,有成立,因为,所以成立,从而函数的图像关于直线对称。2、解:(1)因为所以又因为,所以,即;(2) ,又因为,所以 ,所以,所以3、答案:由-11,得-31。可知函数的值域为-3,1. ()解:由题设条件及三角函数图象和性质可知,的周其为w,又由w0,得,即得w=2。于是有,再由,解得。所以的单调增区间为4、解:(1)y=cos2x+sinxcosx+1= (2cos2x1)+ +(2sinxcosx)+1=cos2x+sin2x+=(cos2xsin+sin2xcos)+=sin(2x+)+所以y取最大值时,只需2x+=+2k,(kZ),即 x=+k,(kZ)。所以当函数y取最大值时,自变量x的集合为x|x=+k,kZ(2)将函数y=sinx依次进行如下变换:(i)把函数y=sinx的图像向左平移,得到函数y=sin(x+)的图像;(ii)把得到的图像上各点横坐标缩短到原来的倍(纵坐标不变),得到函数y=sin(2x+)的图像;(iii)把得到的图像上各点纵坐标缩短到原来的倍(横坐标不变),得到函数y=sin(2x+)的图像; (iv)把得到的图像向上平移个单位长度,得到函数y=sin(2x+)+的图像。综上得到y=cos2x+sinxcosx+1的图像。5、解:(1)由正弦定理及,有,即,所以,又因为,所以,因为,所以,又,所以。(2)在中,由余弦定理可得,又,所以有,所以的面积为。6、解: (1)f(x)=cos(2x+)+sinx.=所以函数f(x)的最大值为,最小正周期. (2)=, 所以, 因为C为锐角, 所以,又因为在ABC 中, cosB=, 所以 , 所以 7、解:()由,且,ABC,又,()如图,由正弦定理得,又 8、解(1)依题意有,则,将点代入得,而,故;(2)依题意有,而,9、解:() 又
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年民办教育机构合规运营与品牌建设实践案例研究报告
- 2025年海洋生态修复技术与海洋环境保护政策创新研究报告
- 2025年房地产企业多元化布局下的产业链协同效应深度分析报告
- 现代煤化工培训课件
- 2025年营养师资格证考试冲刺试卷:深度解析基础理论与实操技巧
- 2025年Python边缘计算架构考试专项训练试卷 知识点精讲版
- 2025年注册会计师(CPA)考试 会计科目冲刺复习必做模拟试卷
- 2025年公务员考试申论热点问题押题试卷 时政素材专项训练
- 2025年高考数学三角函数专项训练冲刺押题试卷
- 2025年注册会计师(CPA)考试 会计科目全真试题试卷及解析
- 2025-2030奢侈品礼品包装消费行为与品牌战略分析报告
- (2025年标准)个人转款协议书
- 2025年电力交易员(高级工)考试复习题库(含答案)
- 区域检验信息管理系统规划书
- 冷库安全基本知识培训课件
- 澄海玩具行业出口中存在的问题及对策分析
- 工业园区集中供热配套建设项目可行性研究报告
- 2024-2030全球飞机拆解再制造行业调研及趋势分析报告
- 常减压装置仿真操作正常停车石油炼制装置操作02课件
- 2025年科技创新企业财务工作总结及计划
- 餐饮店食品经营操作流程4篇
评论
0/150
提交评论