




已阅读5页,还剩72页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
7.4数列求和、数列的综合应用,第七章数列与数学归纳法,NEIRONGSUOYIN,内容索引,基础知识自主学习,题型分类深度剖析,课时作业,1,基础知识自主学习,PARTONE,知识梳理,1.等差数列的前n项和公式,ZHISHISHULI,2.等比数列的前n项和公式,3.一些常见数列的前n项和公式(1)1234n.(2)13572n1.(3)24682n.,n2,n(n1),4.数列求和的常用方法(1)公式法等差、等比数列或可化为等差、等比数列的可直接使用公式求和.(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.,(4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.(6)并项求和法一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如an(1)nf(n)类型,可采用两项合并求解.例如,Sn10029929829722212(10099)(9897)(21)5050.,基础自测,JICHUZICE,题组一思考辨析,1,2,3,4,5,6,7,1,2,3,4,5,6,(5)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin21sin22sin23sin288sin28944.5.()(6)如果数列an是周期为k的周期数列,那么SkmmSk(m,k为大于1的正整数).(),7,题组二教材改编,1,2,3,4,5,6,2.P61A组T5一个球从100m高处自由落下,每次着地后又跳回到原高度的一半再落下,当它第10次着地时,经过的路程是A.100200(129)B.100100(129)C.200(129)D.100(129),7,1,2,3,4,5,6,3.P61A组T4(3)12x3x2nxn1_(x0且x1).,解析设Sn12x3x2nxn1,则xSnx2x23x3nxn,得(1x)Sn1xx2xn1nxn,7,1,2,3,4,5,6,题组三易错自纠4.已知数列an的前n项和为Sn,a11,当n2时,an2Sn1n,则S2019等于A.1007B.1008C.1009D.1010,解析由an2Sn1n得an12Snn1,两式相减得an1an2an1an1an1S2019a1(a2a3)(a2018a2019)1009111010.,7,1,2,3,4,5,6,5.数列an的通项公式为an(1)n1(4n3),则它的前100项之和S100等于A.200B.200C.400D.400,解析S100(413)(423)(433)(41003)4(12)(34)(99100)4(50)200.,7,1,2,3,4,5,6,1008,故S4a1a2a3a42.a50,a66,a70,a88,故a5a6a7a82,周期T4.S2017S2016a2017,7,1,2,3,4,5,6,4,7,2,题型分类深度剖析,PARTTWO,第1课时数列求和的常用方法,题型一分组转化法求和,师生共研,解当n1时,a1S11;,a1也满足ann,故数列an的通项公式为ann(nN*).,(2)设求数列bn的前2n项和.,B(12)(34)(2n1)2nn.故数列bn的前2n项和T2nAB22n1n2.,解由(1)知ann,故bn2n(1)nn.记数列bn的前2n项和为T2n,则T2n(212222n)(12342n).记A212222n,B12342n,,本例(2)中,求数列bn的前n项和Tn.,解由(1)知bn2n(1)nn.当n为偶数时,Tn(21222n)1234(n1)n,当n为奇数时,Tn(21222n)1234(n2)(n1)n,分组转化法求和的常见类型(1)若anbncn,且bn,cn为等差或等比数列,可采用分组求和法求an的前n项和.,提醒:某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.,跟踪训练1(2018温州市适应性考试)已知数列an的前n项和为Sn,且a12,2Sn(n1)2ann2an1,数列bn满足b1a1,nbn1anbn.(1)求数列an和bn的通项公式;,解由2Sn(n1)2ann2an1,可得2Sn1(n2)2an1(n1)2an2,得2an12(n22n2)an1(n1)2an2(n1)2an,所以2(n1)2an1(n1)2an2(n1)2an,化简得2an1an2an,所以an是等差数列.由2S1(11)2a1a2可得a24,所以公差da2a1422,故an22(n1)2n.由b1a1,nbn1anbn以及an2n可知,b12,2,所以数列bn是以2为首项,2为公比的等比数列,故bn22n12n.,(2)若数列cn满足cnanbn(nN*),求数列cn的前n项和Tn.,n2n2n12.,解因为cnanbn2n2n,所以Tn(22)(422)(623)(2n2n)(2462n)(222232n),题型二错位相减法求和,师生共研,解设等比数列an的公比为q(q1),,故an33n13n.,解由(1)知,cnn3n,所以Tnc1c2c3cn13232n3n,则3Tn132233(n1)3nn3n1.两式相减得,2Tn332333nn3n1,错位相减法求和时的注意点(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“SnqSn”的表达式.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.,(1)求数列an的通项公式;,故数列an是公差为1的等差数列,又a11,所以an1(n1)1n.,(2)设,数列bn的前n项和为Hn,求使得Hnn2n150成立的最小整数n.,解因为n2n,所以Hn(121222n2n),则2Hn(22223n2n1).将以上两式作差化简可得Hnn2n12n12,于是,Hnn2n150,即2n152,解得n5.故最小正整数n是5.,题型三裂项相消法求和,多维探究,例3(2018浙江省金丽衢十二校联考)已知等差数列an的公差为2,等比数列bn的公比为2,且anbnn2n.(1)求数列an和bn的通项公式;,解anbnn2n,解得a12,b11,an22(n1)2n,bn2n1.,解an2n,bn2n1,,Tnc1c2c3c4cn1cn,命题点3裂项相消法的灵活运用,例5(2018绍兴诸暨市期末)已知等差数列an的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.(1)求数列an的通项公式;,由题意得(2a12)2a1(4a112),解得a11,所以an2n1.,解由题意知Sn3n22n,当n2时,anSnSn16n5,a1321,适合上式,an6n5.,跟踪训练3(2018绍兴市六校质检)已知函数f(x)3x22x,数列an的前n项和为Sn,点(n,Sn)(nN*)均在函数f(x)的图象上.(1)求数列an的通项公式;,3,课时作业,PARTTHREE,基础保分练,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,又a11,所以a22,则数列an的奇数项和偶数项分别构成以2为公比的等比数列,所以S2018(a1a3a2017)(a2a4a2018),2.(2018杭州质检)设数列an满足a11,an1an2n(nN*).若Sn为数列的前n项和,则S2018等于A.220161B.3210093C.220093D.220103,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,3.已知数列2008,2009,1,2008,2009,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2019项之和S2019等于A.4018B.2010C.1D.0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析由已知得anan1an1(n2),an1anan1.故数列的前8项依次为2008,2009,1,2008,2009,1,2008,2009.由此可知此数列为周期数列,周期为6,且S60.201963363,S2019S32008200914018.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,4.在数列an中,若an1(1)nan2n1(nN*),则数列an的前12项和等于A.76B.78C.80D.82,解析由已知an1(1)nan2n1,得an2(1)n1an12n1,得an2an(1)n(2n1)(2n1),取n1,5,9及n2,6,10,结果相加可得S12a1a2a3a4a11a1278.故选B.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析由题意,得a1a2a3a1001222223232424252992100210021012(12)(32)(43)(99100)(101100)(1299100)(23100101)1011100.故选B.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析设等差数列an的公差为d,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,7.有穷数列1,12,124,1242n1所有项的和为_.,2n12n,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析anan12(n1)(nN*),当n2时,an1an2n,an1an12,a2018a20162,数列an的奇数项和偶数项分别是公差为2的等差数列,又a11,a23,,2,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解得a13或a10.由an0,得a13.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,所以(an1an)(an1an3)0.因为an0,所以an1an0,an1an3.即数列an是以3为首项,3为公差的等差数列,所以an33(n1)3n.,所以,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,10.(2018湖州市适应性考试)已知等比数列an满足2a1a33a2,且a32是a2,a4的等差中项.(1)求数列an的通项公式;,解设等比数列an的首项为a1,公比为q,依题意,有2(a32)a2a4,即2(a1q22)a1qa1q3,由2a1a33a2,得2a1a1q23a1q,解得q1或q2.当q1时,不合题意,故舍去;当q2时,代入式得a12,所以an2n.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,所以Sn212222332nn(222232n)(123n),1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,因为Sn2n1470,解得n9或n10,由nN*,故使Sn2n1471,当n2时,从而有(an1an)(anan1)(an1)2(an11)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025浙江绍兴市国资委组织开展“智汇国资才聚共富”绍兴市国有企业专场招聘111人笔试参考题库附带答案详解
- 2025江苏连云港市赣榆农业发展集团有限公司及下属子公司招聘62人笔试参考题库附带答案详解
- 2025战新产业“330”中国能建葛洲坝集团社会招聘330人笔试参考题库附带答案详解
- 2025年宁德港务集团春季校园招聘24人笔试参考题库附带答案详解
- 2025年中航大(天津)科技园有限公司招聘4人笔试参考题库附带答案详解
- 2025年3月福建漳州台商投资区资产运营集团有限公司招聘人力资源服务外包人员13人笔试参考题库附带答案详解
- 2025届湖北宝钢股份黄石涂镀板有限公司应届毕业生招聘1人笔试参考题库附带答案详解
- 危险酒店安全知识培训内容课件
- 危险运输安全培训计划课件
- 地铁志愿者安全培训课件
- 流程管理某省市场营销MPR+LTC流程规划方案
- 疏浚管线工技能操作考核试卷及答案
- 化工厂实习安全培训课件
- 疏浚清淤工程合同协议书
- 电子电子技术试题及答案
- 2025项目管理考试题及答案
- 五年级篮球培训课件
- 护林员巡护安全知识培训课件
- 辽宁省2025年中考英语真题附答案
- 喷涂基础知识培训课件
- 2025年驻外内聘考试题库
评论
0/150
提交评论