数学专题-三角形中的常用辅助线.pdf_第1页
数学专题-三角形中的常用辅助线.pdf_第2页
数学专题-三角形中的常用辅助线.pdf_第3页
数学专题-三角形中的常用辅助线.pdf_第4页
数学专题-三角形中的常用辅助线.pdf_第5页
已阅读5页,还剩5页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 数学专题三角形中的常用辅助线 数学专题三角形中的常用辅助线 一、方法概述 一、方法概述 几何的难点就在辅助线。辅助线如何添?把握定理和概念,还要刻苦加钻研,找出 规律凭经验。 (一)找全等三角形的方法: (一)找全等三角形的方法: (1)可以从结论结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个 可能全等的三角形中; (2)可以从已知条件已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线辅助线,构造全等三角形。 (二)三角形中常见辅助线的作法: (二)三角形中常见辅助线的作法: (1)延长中线延长中线构造全等三角形; (2)利用翻折翻折,构造全等三角形; (3)引平行线引平行线构造全等三角形; (4)作连线连线构造等腰三角形。 二、典型例题 二、典型例题 (一)遇到等腰三角形等腰三角形,可作底边上的高底边上的高,利用“三线合一三线合一”的性质解题,思维 模式是全等变换中的“对折”“对折”。 例 1:如图,ABC 是等腰直角三角形,BAC=90,BD 平分ABC 交 AC 于点 D, CE 垂直于 BD,交 BD 的延长线于点 E。求证:BD=2CE。 1、思路分析: 1、思路分析: (1)题意分析:本题考查等腰三角形的三线合一定理的应用等腰三角形的三线合一定理的应用 (2)解题思路:要求证 BD=2CE,可用加倍法,延长短边,又因为有 BD 平分ABC 的条件,可以和等腰三角形的三线合一定理结合起来 2 2、解题后的思考: 2、解题后的思考: 等腰三角形“三线合一三线合一”性质的逆命题在添加辅助线中的应用,不但可以提高解 题的能力,而且还加强了相关知识点和不同知识领域的联系,开拓了一个广阔的探索 空间;并且在添加辅助线的过程中也蕴含着化归化归的数学思想,它是解决问题的关键。 (二)若遇到三角形的中线三角形的中线,可倍长中线倍长中线,使延长线段与原中线长相等,构造全 等三角形,利用的思维模式是全等变换中的“旋转旋转”。 例 2:如图,已知ABC 中,AD 是BAC 的平分线,AD 又是 BC 边上的中线。求证: ABC 是等腰三角形。 1、思路分析: 1、思路分析: (1)题意分析:本题考查全等三角形常见辅助线的知识全等三角形常见辅助线的知识。 (2)解题思路:在证明三角形的问题中特别要注意题目中出现的中点、中线、中中点、中线、中 位线位线等条件,一般这些条件都是解题的突破口,本题给出了 AD 又是 BC 边上的中线这 一条件,而且要求证 AB=AC,可倍长 AD 得全等三角形。 2、解题后的思考: 2、解题后的思考: 题目中如果出现了三角形的中线,常加倍延长此线段,再将端点连结,便可得到 全等三角形。 (三)遇到角平分线角平分线,可以自角平分线上的某一点向角的两边作垂线向角的两边作垂线,利用的思 维模式是三角形全等变换中的“对折对折”,所考知识点常常是角平分线的性质定理或逆角平分线的性质定理或逆 定理定理。 例 3:已知,如图,AC 平分BAD,CD=CB,ABAD。求证:B+ADC=180。 1、思路分析 1、思路分析 3 (1)题意分析:本题考查角平分线定理的应用。 (2) 解题思路: 因为 AC 是BAD 的平分线, 所以可过点 C 作BAD 的两边的垂线, 构造直角三角形,通过证明三角形全等解决问题。 2、解题后的思考: 2、解题后的思考: 关于角平行线的问题,常用两种辅助线; 见中点即联想到中位线。 (四)过图形上某一点作特定的平行线特定的平行线,构造全等三角形,利用的思维模式是全 等变换中的“平移平移”或“翻转折叠翻转折叠”。 例 4:如图,ABC 中,AB=AC,E 是 AB 上一点,F 是 AC 延长线上一点,连 EF 交 BC 于 D,若 EB=CF。 求证:DE=DF。 1、思路分析: 1、思路分析: (1)题意分析:本题考查全等三角形常见辅助线的知识:作平行线作平行线。 (2)解题思路:因为 DE、DF 所在的两个三角形DEB 与DFC 不可能全等,又知 EB=CF,所以需通过添加辅助线进行相等线段的等量代换等量代换:过 E 作 EG/CF,构造中心对 称型全等三角形,再利用等腰三角形的性质,使问题得以解决。 4 (五)截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等, 或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。 这种作法,适合于证明线段的和、差、倍、分线段的和、差、倍、分等类的题目。 例 5:ABC 中,BAC=60,C=40,AP 平分BAC 交 BC 于 P,BQ 平分ABC 交 AC 于 Q,求证:AB+BP=BQ+AQ。 解题后的思考: 解题后的思考: (1)本题也可以在 AB 上截取 AD=AQ,连 OD,构造全等三角形,即“截长法”。 (2)本题利用“平行法”的解法也较多,举例如下: 如图(2),过 O 作 ODBC 交 AC 于 D,则ADOABO 从而得以解决。 5 如图(5),过 P 作 PDBQ 交 AC 于 D,则ABPADP 从而得以解决。 小结:小结:通过一题的多种辅助线添加方法,体会添加辅助线的目的在于构造全等三添加辅助线的目的在于构造全等三 角形角形。而不同的添加方法实际是从不同途径来实现线段的转移转移的,体会构造的全等三 角形在转移线段转移线段中的作用。从变换的观点可以看到,不论是作平行线平行线还是倍长中线倍长中线, 实质都是对三角形作了一个以中点为旋转中心的旋转变换以中点为旋转中心的旋转变换构造了全等三角形。 例 6:如图甲,ADBC,点 E 在线段 AB 上,ADE=CDE,DCE=ECB。 求证:CD=AD+BC。 1、思路分析: 1、思路分析: (1)题意分析:本题考查全等三角形常见辅助线的知识:截长法或补短法全等三角形常见辅助线的知识:截长法或补短法。 (2)解题思路:结论是 CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在 CD 上截取 CF=CB,只要再证 DF=DA 即可,这就转化为证明两线段相等的问题,从而达 到简化问题的目的。 6 2、解题后的思考: 2、解题后的思考: 遇到求证一条线段等于另两条线段之和时,一般方法是截长法或补短法: 截长截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一 条; 补短补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长 线段。 (1)对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三角形中两线段之和大于第 三边、之差小于第三边三边、之差小于第三边,故可想办法将其放在一个三角形中证明。 (2)在利用三角形三边关系证明线段不等关系时,如直接证明不出来,可连接两连接两 点或延长某边构成三角形点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角 形三边的不等关系三边的不等关系证明。 三、三角形辅助线口诀小结 三、三角形辅助线口诀小结 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角形。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 四、典型例题扩展-全等三角形常见辅助线添加方法 四、典型例题扩展-全等三角形常见辅助线添加方法 (一)有角平分线时,通常在角的两边截取相等的线段,构造全等三角形。 (一)有角平分线时,通常在角的两边截取相等的线段,构造全等三角形。 例:如图 1:已知 AD 为ABC 的中线,且12,34,求证:BECFEF。 (二)有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形。 (二)有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形。 例:如图 2:AD 为ABC 的中线,且12,34,求证:BECFEF A B C D EF N 1图 1 23 4 7 (三)有三角形中线时,常延长加倍中线,构造全等三角形。 (三)有三角形中线时,常延长加倍中线,构造全等三角形。 例:如图 3:AD 为 ABC 的中线,求证:ABAC2AD。 图 3 练习:已知ABC,AD 是 BC 边上的中线,分别以 AB 边、AC 边为直角边各向形外 作等腰直角三角形,如图 4, 求证 EF2AD。 (四)截长补短法作辅助线。 (四)截长补短法作辅助线。 例如:已知如图 5:在ABC 中,ABAC,12,P 为 AD 上任一点。 求证:ABACPBPC。 2图 A B C D EF M 1 23 4 A BCD E A B CD E F 4图 A B C D N M P 5图 1 2 8 (五)延长已知边构造三角形: (五)延长已知边构造三角形: 例如:如图 6:已知 ACBD,ADAC 于 A ,BCBD 于 B, 求证:ADBC (六)连接四边形的对角线,把四边形的问题转化成为三角形来解决。 (六)连接四边形的对角线,把四边形的问题转化成为三角形来解决。 例如:如图 7:ABCD,ADBC 求证:AB=CD。 (七)有和角平分线垂直的线段时,通常把这条线段延长。 (七)有和角平分线垂直的线段时,通常把这条线段延长。 例如:如图 8:在 RtABC 中,ABAC,BAC90,12,CEBD 的延长 于 E 。求证:BD2CE 图 8 (八)连接已知点,构造全等三角形。 (八)连接已知点,构造全等三角形。 例如:已知:如图 9;AC、BD 相交于 O 点,且 ABDC,ACBD,求证:AD。 A B CD E 6图 O A BC D 7图 1 2 3 4 D CB A O 19 图 9 (九)取线段中点构造全等三有形。 (九)取线段中点构造全等三有形。 例如:如图 10:ABDC,AD 求证:ABCDCB。 五、练习: 五、练习: 1、已知,如图 1,在四边形 ABCD 中,BCAB,AD=DC,BD 平分ABC。 求证: BAD+BCD=180。 2、已知,如图 2,1=2,P 为 BN 上一点,且 PDBC 于点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论