




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第六章数列6.4数列的综合运用,高考理数,考点一数列求和1.公式法(1)直接用等差、等比数列的求和公式求解.(2)掌握一些常见的数列的前n项和公式:1+2+3+n=;2+4+6+2n=n2+n;1+3+5+(2n-1)=n2;12+22+32+n2=;13+23+33+n3=.,知识清单,2.倒序相加法如果一个数列an,与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n项和即可用倒序相加法.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求.4.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.常见的拆项公式:(1)=-;,(2)=;(3)=-.5.分组求和法有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,即先分别求和,再合并,形如:(1)an+bn,其中(2)an=,考点二数列的综合应用1.解答数列应用题的基本步骤(1)审题仔细阅读材料,认真理解题意;(2)建模将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的特征以及要求什么;(3)求解求出该问题的数学解;(4)还原将所求结果还原到原实际问题中.2.数列应用题常见模型(1)等差模型:如果增加(或减少)的量是一个固定值,那么该模型是等差模型,增加(或减少)的量就是公差.其一般形式是an+1-an=d(常数).(2)等比模型:如果后一个量与前一个量的比是一个固定的数,那么该模,型是等比模型,这个固定的数就是公比.其一般形式是=q(q为常数,且q0).(3)混合模型:在一个问题中同时涉及等比数列和等差数列的模型.(4)生长模型:如果某一个量,每一期以一个固定的百分数增加(或减少),同时又以一个固定的具体量增加(或减少),称该模型为生长模型,如分期付款问题,树木的生长与砍伐问题等.如设贷款总额为a,年利率为r,等额还款数为b,分n期还完,则b=a.(5)递推模型:如果容易推导该数列任意一项an与它的前一项an-1(或前n项)间的递推关系式,那么我们可以用递推数列的知识求解问题.,1.一般地,如果数列an是等差数列,bn是等比数列,求数列anbn的前n项和时,可采用错位相减法.2.用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“Sn-qSn”的表达式.(3)应用等比数列求和公式必须注意公比q1这一前提条件,如果不能确定公比q是否为1,应分两种情况进行讨论,这在以前的高考中经常考查.,错位相减法求和,方法技巧,例1(2017广东惠州4月模拟,17)已知等差数列an满足(a1+a2)+(a2+a3)+(an+an+1)=2n(n+1)(nN*).(1)求数列an的通项公式;(2)求数列的前n项和Sn.,解题导引,解析(1)设等差数列an的公差为d,由已知得(2分)即所以解得(4分)所以an=2n-1.(6分)(2)由(1)得=,所以Sn=1+,Sn=+,(8分)-得Sn=1+1+-=3-,(10分)所以Sn=6-.(12分),1.对于裂项后明显有能够相消的项的一类数列,在求和时常用“裂项法”,分式数列的求和多用此法.2.利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.例2(2017江西赣州信丰中学高考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年九年级历史下册 第二单元 凡尔赛-华盛顿体系下的世界 第3课 凡尔赛-华盛顿体系说课稿 新人教版
- 2025智能交通平台渠道代理合同
- 机械厂员工转正结果管理办法
- 2025杭州市房屋租赁合同范本
- 2025年农业种植合同范本B
- 《大堰河-我的保姆》《秦腔》教学设计 2023-2024学年统编版高中语文选择性必修下册
- 第3课 色彩斑斓水彩画教学设计-2023-2024学年小学信息技术(信息科技)五年级下册人教·内蒙古版
- HZL54河南电建汽车产业园土地租赁及建设合同
- 电力改造项目安全责任免除合同范本
- 海外电子商务合同跨境法律适用及风险防范策略
- 辽宁省沈阳市2024-2025学年八年级上学期期末考试英语试题(含答案无听力原文及音频)
- 小班晨间活动体能大循环
- 绿化小型工程合同范例
- 涂层材料与叶轮匹配性研究-洞察分析
- 讯问笔录课件教学课件
- 《建筑工程设计文件编制深度规定》(2022年版)
- 2.3地表形态与人类活动课件湘教版(2019)高中地理选择性必修一
- 病例报告表(CRF)模板
- 辽宁省名校联盟2024-2025学年高三上学期10月联考数学试卷
- 广东省珠海市香洲区文园中学2024-2025学年七年级上学期10月月考数学试卷(无答案)
- 2019年医疗器械体外诊断与病理诊断行业分析报告
评论
0/150
提交评论