2020版高考数学大一轮复习 第7章 不等式 第2讲 二元一次不等式(组)与简单的线性规划问题课件 理.ppt_第1页
2020版高考数学大一轮复习 第7章 不等式 第2讲 二元一次不等式(组)与简单的线性规划问题课件 理.ppt_第2页
2020版高考数学大一轮复习 第7章 不等式 第2讲 二元一次不等式(组)与简单的线性规划问题课件 理.ppt_第3页
2020版高考数学大一轮复习 第7章 不等式 第2讲 二元一次不等式(组)与简单的线性规划问题课件 理.ppt_第4页
2020版高考数学大一轮复习 第7章 不等式 第2讲 二元一次不等式(组)与简单的线性规划问题课件 理.ppt_第5页
已阅读5页,还剩55页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2讲二元一次不等式(组)与简单的线性规划问题,第七章不等式,考情精解读,A考点帮知识全通关,目录CONTENTS,命题规律,聚焦核心素养,考点1二元一次不等式(组)与平面区域考点2简单的线性规划问题,考法1平面区域问题考法2求目标函数的最值(范围)考法3含参线性规划问题考法4线性规划的实际应用,B考法帮题型全突破,C方法帮素养大提升,易混易错对目标函数中的参数把握不准致误,考情精解读,命题规律聚焦核心素养,命题规律,1.命题分析预测从近五年的命题情况来看,本讲是高考的重点,命题稳定,难度适中.主要考查利用线性规划知识求目标函数的最值、取值范围、参数的取值(范围)以及实际应用,目标函数大多是线性的,偶尔也会出现斜率型和距离型的目标函数,主要以选择题和填空题的形式出现.2.学科核心素养本讲通过线性规划问题及其应用考查考生的数学运算、直观想象和数学建模素养及数形结合思想的应用.,聚焦核心素养,A考点帮知识全通关,考点1二元一次不等式(组)与平面区域考点2简单的线性规划问题,考点1二元一次不等式(组)与平面区域,1.二元一次不等式(组)表示的平面区域,说明直线同侧同号,异侧异号.,2.画二元一次不等式(组)表示的平面区域的步骤可简记为:直线定界,虚实分明;特殊点定域,优选原点;阴影表示.注意不等式中有无等号.,考点2简单的线性规划问题,线性规划的有关概念,说明如果目标函数存在一个最优解,那么最优解通常在可行域的顶点处取得;如果目标函数存在多个最优解,那么最优解一般在可行域的边界上取得.注意最优解必定是可行解,但可行解不一定是最优解.最优解不一定唯一,有时有多个.,B考法帮题型全突破,理科数学第七章:不等式,考法1平面区域问题考法2求目标函数的最值(范围)考法3含参线性规划问题考法4线性规划的实际应用,考法1平面区域问题,思维导引先正确作出不含参数a的不等式构成的二元一次不等式组所表示的平面区域,然后通过平移直线x+y=0来观察原不等式组所围成平面区域的形状是否为三角形,从而得出参数a的取值范围.,图7-2-1,解析1.(1)C满足约束条件的平面区域如图D7-2-3中阴影部分所示.因为直线y=kx-3过定点(0,-3),所以当y=kx-3过点C(1,0)时,k=3;当y=kx-3过点B(-1,0)时,k=-3,所以当k-3或k3时,直线y=kx-3与平面区域D有公共点.故选C.,图D7-2-3图D7-2-4,考法2求目标函数的最值(范围),思维导引思路一先根据不等式组画出可行域,然后平移直线2x+5y=0,再根据目标函数的几何意义确定出其最小值.思路二先求出可行域各顶点的坐标,然后分别计算出各顶点处的目标函数值,再找出最小值.,图7-2-2,思维导引作出不等式组对应的平面区域,将目标函数化简变形,利用目标函数的几何意义,进而可得目标函数的取值范围.,解析作出不等式组对应的平面区域如图中阴影部分(不包括边界OB)所示,其中A(1,2),B(0,2).,(注意点B是空心点),图D7-2-5图D7-2-6,图D7-2-7解法二作出可行域如图D7-2-7所示,由图可知,阴影区域内的点都在直线x+2y-4=0的上方,显然此时有x+2y-40,于是目标函数等价于z=x+2y-4,即转化为简单的线性规划问题.显然当直线经过点B时,目标函数取得最大值,此时zmax=21.,考法3含参线性规划问题,思维导引作出不等式组对应的平面区域,利用z的几何意义,结合z的最大值是最小值的4倍建立方程,即可得出结果.,解析作出不等式组对应的平面区域如图7-2-4中阴影部分(包括边界)所示.(把参数当成常数),图7-2-4,方法总结由目标函数的最值求参数的方法1.把参数当常数用,根据线性规划问题的求解方法求出最优解,代入目标函数求出最值,通过构造方程或不等式求出参数的值或取值范围.,图D7-2-8,考法4线性规划的实际应用,示例4某共享汽车品牌在某市投放1500辆宝马轿车,为人们的出行提供了一种新的交通方式.该市的市民小王喜欢自驾游,他在该市通过网络组织了一场“周日租车游”活动,招募了30名自驾游爱好者租车旅游,他们计划租用A,B两种型号的宝马轿车,已知A,B两种型号的宝马轿车每辆的载客量都是5人,每天的租金分别为600元/辆和1000元/辆,根据要求租车总数不超过12辆且不少于6辆,且A,B两种型号的宝马轿车至少各租用1辆,则租车所需的租金最少为元.,思维导引先确定变量,然后根据已知条件列出变量所满足的不等式组以及目标函数,进而根据目标函数的几何意义确定最优解,求得目标函数的最值,最后还原为实际问题即可.,感悟升华1.解线性规划应用题的3个步骤,拓展变式5甲、乙两工厂根据赛事组委会要求为获奖者定做某工艺品作为奖品,其中一等奖奖品3件,二等奖奖品6件;制作一等奖、二等奖所用原料完全相同,但工艺不同,故价格有所差异.甲厂收费便宜,但原料有限,最多只能制作4件奖品,乙厂原料充足,但收费较贵,它们的具体收费如下表所示,则组委会定做该工艺品的费用总和最低为元.,C方法帮素养大提升,易错对目标函数中的参数把握不准致误,易混易错示例6已知变量x,y满足约束条件若使z=ax+y取得最小值的最优解有无穷多个,则实数a的取值集合是A.-2,0B.-2,1C.0,1D.-2,0,1易错分析不能理解题目中“最优解有无穷多个”对目标函数所对应直线的要求,从而不能对直线的斜率进行正确地讨论,导致错误.,易混易错对目标函数中的参数把握不准致误,解析作出不等式组所表示的平面区域,如图7-2-6中阴影部分所示.,图7-2-6,由z=ax+y,得y=-ax+z.若a=0,则直线y=-ax+z=z,此时z取得最小值的最优解只有一个,不满足题意;若-a0,则当直线y=-ax+z在y轴上的截距取得最小值时,z取得最小值,此时当直线y=-ax与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论