凸函数的性质及其在不等式证明中的应用.doc_第1页
凸函数的性质及其在不等式证明中的应用.doc_第2页
凸函数的性质及其在不等式证明中的应用.doc_第3页
凸函数的性质及其在不等式证明中的应用.doc_第4页
凸函数的性质及其在不等式证明中的应用.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

凸函数的性质及其在不等式证明中的应用学生姓名:刘娟 指导教师:张喜善摘要:凸函数是一种性质特殊的函数,它的诸多性质在许多数学分支中,例如:数学分析、最优化理论、泛函分析等分支中都可以看到其相关的应用。本文将从凸函数的定义性质出发,讨论其在几个比较重要的不等式证明方面的应用,其方法主要是先构造能出一个能够解决问题的凸函数然后从凸函数的性质入手整理化简不等式从而达到解决问题的目的。关键词:凸函数 定义 性质 不等式证明引言:凸函数是一类重要的函数,它的应用领域非常广泛,在很多数学问题的分析与证明中我们都需要用到凸函数,特别是在不等式的研究中尤为重要,而不等式最终归结为研究函数的特性,所以研究凸函数的性质就显得十分必要了。凸函数的性质可以解决很多不等式的证明,在证明问题中利用凸函数的性质定理可以使得证明过程更加简洁、巧妙,而证明的关键步骤就是构造出一个能解决问题的凸函数,再运用凸函数的定义及重要性质,可将一些初等不等式,积分不等式转化为研究函数的性态,从而使不等式简化进而得到证明。本文将从凸函数的定义与性质出发,在了解了凸函数的各个性质之后再研究某些性质在几个比较重要的不等式证明当中是怎样应用的,通过应用凸函数的性质来证明本文例举的不等式我们将看到运用这种方法的简洁与巧妙之处。1. 凸函数的概念人们常用函数的凸凹性来反映曲线的弯曲方向,这是几何直观上给出的关于函数凸凹性的概念即:曲线上任意两点间的弧段总是在这两点连线的下方,则称具有此种特性的曲线称为凸的,而若曲线上任意两点间的弧段总在这两点连线的上方,则称具有此种特性的函数是凹的。几何上的另一种直观解释是:曲线上任一点的切线总在曲线的下方。 1.1凸函数定义 设在区间上有定义,若对上的任意两点,和任意实数,总有成立,则称为区间上的凸函数;若不等式反向,即则称为区间上的凹函数。(如果两个不等式改为严格不等式,则相应函数称为严格凸、凹函数)。 1.2定理 设为区间上的可导函数,则下列论断相互等价(1) 为上的凸函数(2) 为上的增函数1.3定理 设为区间上的二阶可导函数,则在上为凸(凹)函数的充要条件是(),.证明:若在区间上可导,则在上递增(减)的充要条件是,再有定理1.2即得证。此定理用于判定一个函数是否是凸函数,这点在证明当中是经常用到的,它用来判定我们构造出来的函数是否是我们想要的。2. 凸函数的性质2.1凸函数的运算性质性质1 若为区间上的凸函数,则为区间上的凹函数,反之亦然证明:因为凸函数,由定义知,若对区间上任意两点,和任意实数,总有在上式两边同时乘以得:故为区间上的凹函数。同理可得为区间上的凹函数,则为区间上的凸函数。性质2 若为区间上的凸函数,对任意,当时,为区间上的凸函数;当时,为区间上的凹函数。证明:因为区间上的凸函数,由定义若对区间上任意两点,和任意实数,总有1) 当时,在上式两边同时乘以得:即为凸函数。2) 当时,在上式两边同时乘以得:即为凹函数。性质3 若,为区间上的凸函数,则线性组合()为上的凸函数,()为上的凹函数。证明:因为,是凸函数,由定义的,若对上任意两点和任意实数总有当时+ =即为凸函数当时+ =即为凹函数性质4 若为区间上的凸函数,则为上的凸函数。证明:因为为凸函数,则对上的任意两点和任意实数总有从而=所以为凸函数。性质5 若都是上的非负单调递增的凸函数,则也是上的凸函数。证明:因为是上的非负单调递增的函数,则对上的任意两点有即又因为为凸函数,则对上述的和任意实数总有所以= = 即从而为凸函数。性质6 若为上的单调递增的凸函数,是上的凸函数,则复合函数是凸函数。证明:因为为凸函数,即对任意,和任意实数总有而为单调递增的凸函数,则从而是凸函数。3. 凸函数在不等式证明中的应用3.1凸函数在初等不等式证明中的应用例3.11对任意实数,有证明:设,则,所以当时是凸函数,由凸函数的定义,令,有即 例3.12 当,时有证明:设,则,则在上是凸函数。令,则,则得即用替换即得3.2凸函数在积分不等式证明中的应用例3.21设是区间上的凸函数,则(Hadamard)证明:由于是区间上的凸函数,所以存在,且当时有故即而令得则从而作变换,则有 从而综上所述3.3凸函数在几个重要的不等式证明中的应用例3.31 上例中Hadamard不等式。例3.32霍尔德(Holder)不等式设,则其中,。证明:考虑函数,显然(),则是上的凸函数,则对所有的,且有即 取,则显然有代入(*)式得 又因为,两边同时乘以可得,即,从而上述不等式可化为即则不等式得证。当时,即为柯西不等式例3.33 闵可夫斯基(Minkowski)不等式若,则多任意给的正实数,()有证明:由霍尔德不等式得 因为,而,则,从而又因为,则不等式成立4凸函数的局限性由于凸函数性质的特殊性,在数学得许多的领域中应用十分广泛,然而凸函数也有其局限性。在证明中我们注意到要解决问题的重中之重就是找到合适的凸函数,这不是轻而易举能够办到的,因此如何推广函数的凸性概念,使得在更广泛的函数范围内凸函数的许多重要性质仍然得以保留就得十分重要了。凸规则的大多数结果能推广到非凸规则,已构成了数学规划研究领域的当前趋势之一。通过证明本文列举的不等式我们发现,它们的证明方法都比较类似,都是先找到一个合适的凸函数,然后利用凸函数的一些性质来列出与所要证明的不等式相关的不等式,最后对所列出的不等式进行化简整理进而得证。从上面的例子我们可以看到用凸函数性质来证明不等式的简洁与巧妙之处,看到凸函数在不等式证明中的重要性,当然凸函数作为一类特殊的函数在数学的其他领域中都有着广泛的应用,在此不做深入探究了。参考文献:1华东师范大学数学系编.数学分析(上册)M.第三版.北京:高等教育出版社,2001.2周民强编.数学分析(第一册)M.上海:上海科学技术出版社,2002年9月.3李世杰.凸函数J.青岛职业技术学院学报.2005年6月,第18卷第2期;59-62.4时贞军,岳丽.凸函数的若干新性质及应用J.应用数学增刊.2004:1-3.5Apostol,T.M.Mathematical Analysis,Second EditionM.机械工业出版社,2005.6Rudin,W.Principles of Mathematical Analysis,Third EditionM.机械工业出版社,2005.7徐利治,王兴华.数学分析的方法及例题选讲M.北京;高等教育出版社,2000.8林源渠,方企勒.数学分析习题集M.北京:高等教育出版社,2002.9裴礼文.数学分析中的典型问题和方法,高等教育出版社,1988年.10张筑生.数学分析新讲,北京大学出版社,1991年. 11裘兆泰等.数学分析学习指导,科学出版社,2004年.13孙本旺,汪浩.数学分析中的典型例题和解题方法M.湖南:湖南科技出版社,2001.14刘玉琏.数学分析讲义M.北京:高等教育出版社,1997.The properties of convex function and its application in the inequality proofStudent: Liu Juan Tutor: Zhang XishanAbstract: convex function is a function of a special nature, it has many properties in many branch of mathematics, such as: mathematical analysis, functional analysis, optimal theory and other related branch . This article will start from the nature of convex function discuss its applications of prove in several important inequalities , and the method is mainly to find the c

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论