资源勘查专业毕业论文-河北省青龙满族自治县千马铁矿床成因研究.doc_第1页
资源勘查专业毕业论文-河北省青龙满族自治县千马铁矿床成因研究.doc_第2页
资源勘查专业毕业论文-河北省青龙满族自治县千马铁矿床成因研究.doc_第3页
资源勘查专业毕业论文-河北省青龙满族自治县千马铁矿床成因研究.doc_第4页
资源勘查专业毕业论文-河北省青龙满族自治县千马铁矿床成因研究.doc_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省青龙满族自治县千马铁矿床成因研究GenesisofQianmaironoredepositinQinglongManchuAutonomousCountyofHebeiProvince论文题目论文题目:河北省青龙满族自治县千马铁矿床成因研究学生姓名学生姓名:张嫔学院名称学院名称:专业名称专业名称:资源勘查工程班级名称班级名称:学学号号:指导教师指导教师:教师职称教师职称:22001133年年0077月月77日日摘要千马铁矿位于河北省青龙满族自治县境内。出露底层有单塔子群、元古界地层、古生界地层和第四纪地层。其中单塔子群由一套中浅变质岩系组成,元古界地层为一套浅海相沉积岩,古生界地层的岩性为白云质灰岩、泥质灰岩、砂质页岩夹煤层。在构造方面,本区位于山海关台拱西南,经历五台、吕梁、燕山等多次构造运动,地层褶皱强烈,形成一系列近南北向褶皱及东西向、北西向、北东向三组断裂。该区已经进行过详查工作,并证实千马铁矿为沉积变质铁矿。本文通过描述不同地质时期的地壳演化,以及构造作用、变质作用、混合岩化作用和原岩建造对沉积变质铁矿的影响,对沉积变质铁矿的成因进行的探讨,其中探讨方向包括铁质的物质来源、运移形式和沉淀等,通过上述过程进而得出结论。关键词千马铁矿沉积变质铁矿矿床Abstract:QianmaironoredepositislocatedinQinglongManchuAutonomousCountyofHebeiProvince.ExposedstrataconsistofDantazisubgroupandthestrataoftheProterozoicPaleozoicandQuaternary.DantazisubgroupisedbyaseriesoflowermetamorphosedstratumandtheProterozoicisaseriesofneriticsedimentswhilethePaleozoicincludesdolomiticlimestoneargillaceouslimestoneandsandyshalewiththeinclusionofseam.TheconstructionofthisareabelongstothesouthwestofShanhaiguantectonicbeltgoingwithseveraltimesoftectonicmovementofWutaiLuliangandYanshan.Whilethedeationofstratumisveryintensivetheningaseriesofsouth-northfoldandthreefracturationfromeast-westnorth-westandnorth-east.Thisareahasbeenconductedwithdetailedinvestigationconfirmingthattheironoretypeofthisareaissedimentary-metamorphic.Thediscussionofthecausesofthesedimentary-metamorphicironoreiscomingthroughbythedescriptionofthedifferentgeologicalperiodsofcrustalevolutionwhilethedirectionofthediscussionincludesthequalityofthematerialsourcetheoftransportandprecipitationandthusconcludedthattheaboveprocessetc.Thanitcomesintoaconclution.Keywords:Qianmaironoredepositsedimentary-metamorphicdepositscauseofationin目目录录1、前言前言.11.1问题的提出及依据.11.2研究目的和意义.11.3地理位置与交通.11.4自然地理、经济概况.21.5以往地质工作评述.22、区域地质概况区域地质概况.22.1地层.32.2构造.32.3岩浆活动.42.4区域矿产分布.43、矿区地质矿区地质.43.1地层.43.2矿区构造.53.3岩浆岩.53.4混合岩化作用.63.5磁异常特征.74、矿床地质矿床地质.74.1矿体特征.74.2矿石质量.94.3矿石的化学成分及其变化.115、矿床成因矿床成因.125.1成因分析.125.2成矿规律.155.3找矿方向.216、结论结论.22参考文献参考文献.23致致谢谢.2411、前言前言1.1问题的提出及依据问题的提出及依据通过对成因的分析总结,对把握矿床成矿机制,以及时空上的产出和分布特征有指导意义,并在此基础上总结矿床成矿规律,进而利用成矿规律指导预测、找矿工作是十分重要的。为下一步地质找矿工作提供线索和依据。河北省青龙满族自治县千马铁矿地质特征,如地层,构造、岩浆活动、区域地球物理化学因素、变质因素、岩性等,可作为矿床成因研究的主要依据。1.2研究目的和意义研究目的和意义在河北青龙满族自治县千马铁矿地质背景和矿床地质特征的基础上,系统地分析研究结矿区内的成矿物质来源、控矿构造、地壳的演变过程、成矿规律和矿体的形成过程,为矿山下一步的生产勘探工作提供详实的地质资料,促进矿山的可持续发展。1.3地理位置地理位置与交通与交通千马铁矿位于河北省秦青龙满族自治县拉马沟村,北距县城约3.7km,隶属青龙县青龙镇。矿区有简易公路通往青龙县城,交通便利,见图1。图1交通位置图21.4自然地理、经济概况自然地理、经济概况1.4.1自然地理矿区地处燕山东麓,为中低山区地貌,海拔高度270474m,山峦起伏,沟谷纵横,地形坡度较陡,山谷呈“V”型,山顶呈圆锥形,地貌类型单一。山上有荒草、灌木等,植被发育。本区四季分明,春季风沙较大,夏季炎热多雨,秋季凉爽多风,冬季寒冷干燥,属大陆半干旱季风气候,年平均降雨量744mm,(最小475mm,最大1128.8mm),降雨量集中在79月份,约占全年降雨量的75%。年平均蒸发量达1528mm。无霜期约171天。年平均气温8.9,月平均气温以一月最低,八月最高。极端最高气温38.7,极端最低气温-29.2,最大冻土深度1.09m。封冰期为10月下旬至翌年3月下旬。1.4.2经济条件区内经济以农业为主,主要有玉米、谷类、豆类,经济作物有苹果、梨、板栗、核桃等。区内矿产以铁矿为主,次为金矿,采矿业已成为当地经济发展的重要产业。矿业的发展也带动了运输业和服务业的发展。劳动力相对富余。电力较充足。1.5以往地质工作评述以往地质工作评述本区地质工作开展较早,尤其是1958年以来,先后有地质队、地质院校及科研单位在区内进行过工作,获得了较系统的地质矿产资料。1、19701974年河北区测大队开展了120万山海关幅区域地质测量,对区内地层、构造和岩浆岩进行了系统地质调查、区域化探工作,取得了较完整的资料,为一份具有重要参考价值的地质资料。2、1973年冶金部物探公司航测一队进行过含本区在内的冀东地区航空磁测,并编写了相关报告和15万航磁异常图。3、1989年青龙县地矿局对包括本区在内的青龙县矿产资源进行了系统汇编。2、区域地质概况区域地质概况本区大地构造位于燕山台褶带之次级构造的山海关台拱西南边缘。出露主要地层为太古迁西群、单塔子群。迁西群划分上川组、三屯营组、马兰峪组,位于迁西迁安县西北部。单塔子3群位于本区及迁安县以南广大地区,两群地层是冀东沉积变质铁矿主要含矿层位。2.1地层地层2.1.1迁西群:是一套麻粒岩相变质的上壳岩系,由于构造变动、重熔和岩浆侵入活动的影响,在许多场合下这套地层被搞得支离破碎。2.1.2单塔子群:是本区基底地层,由一套中浅变质岩系组成。岩性以黑云变质岩、角闪变质岩、黑云斜长片麻岩、混合花岗岩为主,夹少量钾长石变粒岩、绿泥片岩、碎裂状石英岩夹磁铁石英岩、角闪磁铁石英岩。2.1.3元古界地层:是本区盖层,分布矿区北、西北地区,与铁矿无成因联系,构成本区丘陵地貌。岩性为一套浅海相沉积岩,即石英岩状砂岩,含燧石条带白云岩、泥质页岩,粉砂质页岩等。2.1.4古生界地层:分布于矿区北公里的武山及以西地区,形成低山地貌。岩性有白云质灰岩、泥质灰岩、砂质页岩夹煤层。2.1.5第四纪地层:分布本区及以南广大地区,厚度10-120m不等。上部为粉质细砂层。中部为粗砂砾石层,夹砂质粘土层,底部有粘土层,常见与白庙子组地层直接接触。2.2构造构造本区位于山海关台拱西南,经历五台、吕梁、燕山等多次构造运动,地层褶皱强烈,形成一系列近南北向褶皱及东西向、北西向、北东向三组断裂。2.2.1褶皱构造:由于早期构造运动使北东太古界地层发生褶皱,轴向近南北,轴面向西倾的紧密同斜倒转褶皱。晚期构造运动使褶皱轴向呈东西、西北倾的开阔褶皱,出露岩性为混合片麻岩、混合花岗岩,保留有原岩(变质岩类)残留体。42.2.2断裂构造:区域上的东西向断裂,以压性为主,分布于迁西-卢龙县以北地区。昌黎至长凝北北东向张扭性断裂,分布矿区南,对铁矿有较大的破坏作用。青龙至滦县北东向扭性断裂,在千马铁矿西邻通过。2.3岩浆活动岩浆活动区域上的岩浆活动主要表现在燕山期,呈岩基状、脉状侵入于老地层之中,岩性有中粗粒斑状花岗岩(昌黎岩体)、辉绿岩、正长斑岩等中基性岩脉,受晚期断裂侵入,规模较小。2.4区域矿产分布区域矿产分布本区矿产主要有沉积变质铁矿及非金属矿,铁矿产于基底变质岩中。由于褶皱构造呈南北向分布。前千马铁矿位于马城朱各庄紧密向斜的北端。铁矿有阎庄、马城、坎上、大贾庄、司家营等中大型铁矿。非金属矿有武山水泥灰岩矿、雷庄玻璃石英矿、开平盆地煤矿、粘土矿等。3、矿区地质矿区地质3.1地层地层矿区含矿地层为太古界单塔子群下部的白庙子组(Arb),岩性下部为黑云变粒岩,上部为角闪黑云变粒岩,经受较强的混合岩化作用,其岩性特征如下:3.1.1变粒岩:以黑云变粒岩为主,次为角闪(透闪)变粒岩、钾长变粒岩,浅灰色,细粒鳞片变晶结构,弱片麻状构造,矿物粒度均匀,0.20.3mm,成分更长石占33%,石英2025%,黑云母1520%,副矿物有磷灰岩、锆英石、磁铁矿。3.1.2绿片岩:见于铁矿层夹层或顶底板地壳演化围岩中,厚度几厘米至数米,与矿层产状一致,岩石呈黑绿色,鳞片柱粒状变晶结构,成分由黑云母,普通角闪石、绿泥石、阳起石、石英组成,副矿物为磷灰石、磁铁矿、锆英石,榍石等。53.1.3石英岩:呈薄层夹于矿层中,见于ZK182和ZK161钻孔中,见碎裂状砂状特征,石英含量95%,少量斜长石、黑云母,副矿物有磷灰岩、石榴石、电气石,磁铁矿等。3.1.4第四系地层:分布矿区及南部,为大面积沉积覆盖于太古界地层之上,厚度3558m。从北向南逐渐增厚。下部为亚粘土或粘土层,厚1015m,中部为含砾粗细砂层,厚1530m,地表为粉砂粘土层,厚715m。3.2矿区构造矿区构造矿区构造以褶皱为主,次级褶皱与断裂都具有多次活动迭加的特点。矿区为东西向断裂与本区褶皱构造紧密伴生,改变早期褶皱所形成的构造层理和褶皱轴走向。矿区内近南北向断裂以张性为主,由燕山早期的闪长玢岩、辉绿岩脉充填,对铁矿层亦有破坏作用。3.2.1断层:有北东向的青龙滦南扭性断裂,从矿区西通过,矿区内断裂见340方向压扭性逆断层,与复式褶皱呈平行分布倾向南西倾角7080,见有闪长岩脉沿断裂侵入。3.2.2褶皱:矿区内褶皱构造有两期,马城朱各庄复式向斜,是形态复杂的同斜紧密倒转褶皱,枢纽近南北,轴面西倾。由于后期断裂和第二期褶皱的影响,使早期褶皱形态产状发生变化,使轴面由340350转向3040,而在坎上铁矿以南地区变化不大。晚期可能受南北作用力影响,使本区复式向斜枢纽呈波状起伏,前千马南北两段铁矿本应同一层位的矿体,由于隆起剥蚀而形成两段单独小矿体群。前千马铁矿轴向位于一个北东3237紧密向斜中,倾向北西,倾角上部2435,下部3544,轴面位于南段号矿体中心,矿层属于倒转翼,上下层位基本对称,钻孔岩矿心中见许多紧密挤压褶曲,其特征与总体褶皱相一致。北段矿体轴面定为B号矿体,B号为倒转翼,与B号矿体对应。3.3岩浆岩浆岩岩63.3.1岩浆活动区内岩浆活动不发育,仅见有燕山中晚期的中基性脉岩侵入,其规模小,常切穿矿体。另有远离矿区的中酸性花岗岩脉,与矿床无成因联系,矿区东23Km外有九龙山花岗岩体,呈岩株状产出。3.3.2辉绿岩:呈脉状,在矿南段见有两条,走向近东西至40方向,倾向南东,倾角7080,厚度130m,岩石呈灰绿色,辉绿结构,由基性斜长石、普通辉石、角闪石及少量磁铁矿、石英组成,两侧见有破碎带,伴有硅化作用。3.3.3闪长岩脉:见于矿区东部1Km的南北向逆断层破碎带中,长3Km,厚130m,倾向西,倾角70,岩石呈灰绿色、斑状结构,斑晶为中性斜长石、角闪石,基质由长石,角闪石、黑云母组成,少量石英、黄铁矿。3.4混合岩化作用混合岩化作用区内混合岩化作用由矿体底板到顶板逐渐增强。混合岩化作用使部分磁铁矿二次富集,同时因新生脉体穿插,破坏矿体完整性,使矿体夹层增多,铁品位变贫。其混合岩类型为:3.4.1混合质黑云变粒岩:多出现于矿体顶底板。矿物组分和结构构造与黑云变粒岩基本一致,表现少量白色脉体沿片理注入交代,呈条痕状斑点状,暗色矿物走向明显,镜下见净边,蠕英结构,矿物颗粒均匀变粗,呈片麻状构造。3.4.2混合片麻岩:分布于矿层底板或远离矿体,由变粒岩经较强的混合岩化作用产物。矿物成分结构、构造发生很大变化,岩石呈浅灰绿色,粗粒片麻状构造,石英含量3545%,角闪石与黑云母具绿泥石化。原岩残体保留少。3.4.3混合花岗岩:多分布复式背斜轴部或围绕变粒岩周边,有的进入磁铁石英岩夹层中,可分红、白两类型。7红色脉体以微斜长石为主,次为斜长石,少量条纹长石,交代结构明显。白色脉体成分是斜长石、石英,有时为单一石英,少量微斜长石。3.5磁异常特征磁异常特征勘查区磁异常在区域航测成果图上编号为M34,位于马城朱各庄复式褶皱带北部仰起端。本次经12000地面磁测划分南北两个磁异常。南段异常:以1000T圈定长轴走向290,长450m,宽260m,中心极大值位于东部6218T,南北两侧出现-100T至-400T低值区,经钻探证实异常由薄层多层磁铁矿引起。北段异常:以500T圈定长轴走向30,长300m,宽240m,中心极大值4717T,异常呈椭圆形,西北侧出现-100至-500T负值区,经钻孔证实,异常由薄层多层磁铁引起。从本区磁参数测定结果分析,磁场强度混合花岗岩为100T以下,黑云变粒岩因含少量磁铁矿而引起在100600T间,中基性岩脉可达5002000T,后者地面表现呈带状。经钻探验证已证实。4、矿床地质矿床地质本区铁矿体分为南北两段,相距1000m,南段由六层矿体组成,北段由五层矿体组成,分布于混合花岗岩或混合片麻岩中,矿层顶底板围岩及夹层为黑云变粒岩、角闪黑云变粒岩、少量混合花岗岩,各矿体间隔1020m,最大为40m,具平行排列特点。走向长25130m,厚度2.0131.17m,产状走向3237,倾向北西,倾角2544。4.1矿体特征矿体特征该区矿体形态比较复杂,磁铁石英岩是一种沉积变质铁矿,其原始沉积的矿体基本形态显为简单的层状。但是,由于后来的变质作用、混合岩化作用,特别是多次构造作用的改造和破坏,致使规则的层状矿体发生褶皱、断裂、塑性流动等,从而使该区矿体形成了多种多样的复杂形态。单个矿体一般呈似层状、透镜状、紧密褶曲状,并在厚度上变化较大。4.1.1南段矿体8矿体分布在1418勘探线之间,赋存标高-31至-278m间,走向长25130m,厚度2.0131.17m,倾斜延深50320m。共见6层矿体,其中、号为主矿体,呈薄层状,厚度变化稳定。其他矿体规模小,呈薄层状、透镜状。总体走向37,北西倾,倾角浅部2535,深部3644,并向西侧伏。现将主矿体分述如下:表4.1前千马铁矿矿体规模、品位统计表矿体厚度(m)磁性铁品位(%)矿体号矿体长(m)自至平均赋存标高(m)倾斜延深(m)最低最高平均全铁品位(%)254.56-120-1475018.8121.7920.4328.39-34.34-1243.55-31-605815.4933.5029.9832.30-37.97-2252.97-148-1755029.3239.48-1722.367.956.00-32-10114221.4231.4226.3733.88-36.61-2253.56-159-1855019.5128.8524.4037.38-38.921152.0111.816.04-77-20521821.1134.3726.6224.28-37.751306.6231.1718.50-77-25332015.2138.8127.0820.89-42.171103.7017.1810.87-98-27832016.3139.0126.7915.98-40.97B258.93-19-444035.7937.3936.4137.08-38.62B256.55-35-685015.5034.1424.3233.17-40.48B844.378.746.56-54-1108716.3332.4525.1723.90-36.39B1003.2610.656.67-22-15420515.8736.9925.9922.14-40.26B1002.689.775.50-28-16221818.4835.7328.5726.73-41.024.1.1.1号矿体:走向3540,倾向北西,倾角3944。走向长115m,薄层状,厚度2.0111.81m,9平均6.04m,赋存标高-77至-205m,倾斜延深218m。磁性铁品位21.1134.37%,全铁品位24.2837.75%。4.1.1.2号矿体:为本区主矿体,矿体走向3035,倾向北西,中间向上(外)弯曲,倾角上部3435,下部3544。走向长130m,倾斜延深320m,与号矿体间隔713m,呈层状,厚度变化较稳定,厚度6.6231.17m,平均18.52m。赋存标高-77至-253m,(未控制到矿体深部边界)。磁性铁品位15.2138.81%,全铁品位20.8942.17%。在ZK142孔见0.84的混合花岗岩夹石。ZK162孔见3层黑云变粒岩夹石,厚度小于剔除厚度,磁性铁品位0.357.08%。4.1.1.3号矿体:位于号矿体下部与其平行分布,间距215m。走向3038,倾向北西,倾角3141。矿体走向长110m,厚3.7017.18m,平均10.87m。赋存标高-98至-278m,倾斜延深320m(未控制到矿体深部边界)。磁性铁品位16.3139.01%,全铁品位15.9840.97%。4.1.2北段矿体矿体分布在2426勘探线上,共见5层矿体,赋存标高-19至-162m,长25100m,厚2.6810.65m,倾斜延深40218m。其中B、B、B为主矿体。矿体呈薄层状、透镜状。厚度变化稳定。余者规模小,总体产状走向32,倾向北西,倾角3840。主要矿体分述如下:4.1.2.1B号矿体:与下层间隔530m,走向32,倾向北西,倾角40。走向长84m,厚4.378.74m,平均6.56m。赋存标高-54至-110m。倾斜延深87m,磁性铁品位16.3332.45%,平均25.17%,全铁品位23.9036.39%。ZK241中见0.86m的黑云变粒岩夹石。4.1.2.2B号矿体:矿体走向由北向南由北北东转为北东东,倾向北西,倾角40。走向长100m,倾斜延深205m,矿体中间向下弯曲。厚度3.2610.65m,平均6.67m。厚度变化较稳定,矿体赋存标高-22m至-154m,磁性铁品位15.8736.99%,平均25.99%,全铁品位20.1440.26%。4.1.2.3B号矿体:10矿体产状2532,倾向北西,倾角3840。矿体走向长100m,倾斜延深210m,厚度2.689.77m,平均5.50m。矿体赋存标高-28至-162m。磁性铁品位18.4835.73%,平均28.57%,全铁品位26.7340.02%。4.2矿石质量矿石质量4.2.1矿石的矿物成分矿石矿物主要为磁铁矿,少量赤铁矿(近地表),磁性铁占有率平均为80.30%,属弱磁性铁矿石,按mFe(TFe-SiFe-sfFe-cFe)计算,大于85%,属于磁性铁矿石。非金属矿物矿物以石英为主,其次为黑云母、透闪石、阳起石、角闪石,偶见绿帘石、黄铁矿、磷灰石、碳酸岩等矿物。4.2.2矿石的结构、构造4.2.2.1矿石结构矿石为粒状变晶结构,磁铁矿以半自形粒状为主,其次为他形,少部分为条带状、细纹状构造。粒度0.050.2mm,占总量70%,少量小于0.05mm。脉石主要成分石英呈他形粒状,粒度与磁铁矿近似。闪石类矿物粒度0.10.5mm之间。见图4-1。11图4-1沉积变质铁矿矿石4.2.2.2矿石构造矿石构造以条纹条带状为主,其次有少量的片麻状和矿状构造,条纹条带状矿石构造是前寒武纪硅铁建造沉积变质铁矿的突出特征,是由磁铁矿和石英、闪石等硅酸盐矿物集中定向排列构成黑白相间的条纹、条带状,其实质是沉积微韵律层。该矿床成因类型属于变质铁硅质建造沉积变质铁矿床。矿石工业类型为贫铁矿,需经选矿处理,按mFe(TFe-SiFe-sfFe-cFe)值计算属于磁性铁矿石,根据自然类型按矿物成分划分,可列三种矿石:需要指出的是:通过矿层顶底板黑云变粒岩取样化验,全铁含量比其他地区(司家营)要高,其中ZK202孔中的含铁变粒岩,全铁品位达2030%,平均26.67%,磁性铁品位2.6726.85%,平均9.47%。4.3矿石的化学成分及其变化矿石的化学成分及其变化依矿石化学成分分析,矿石主要是由SiO2Fe2O3、Al2O3、MgO、CuO及少量TiO2、MnO、K2O、NaO等组成。矿石全铁品位在20.9842.17%,平均33.27%,磁性铁品位15.2037.97%,平均26.79%,12全铁与磁性铁之差4.156.96%,个别达21.71%,平均6.48%,含铁黑云变粒岩两种铁差值9.4819.87%。经铁物相分析,主要铁矿物为磁铁矿、菱铁矿、赤褐铁矿、硫化铁、硅酸铁组成。铁物相分析矿石中含铁矿物以磁铁矿(28.75%)为主,占含铁矿物的80%,其它铁是由硅酸铁(4.78%)、硫铁矿(0.09%)、碳酸铁(1.03%)、赤铁矿(0.75%)等组成(见表4-2)。表4-2单位(%)铁物相分析结果表项目磁铁矿菱铁矿赤褐铁矿硫化铁硅酸铁全铁矿石28.751.030.750.0944.7835.49含铁变粒岩7.302.152.720.2416.7629.69通过样品组合分析(详见表4-3)。有害杂质SiO2平均含量44.3647.26%,P、S含量0.1%,Cu、Pb、Zn小于0.02%,无综合利用价值。黄铁矿在辉绿岩脉边部的矿体局部可见。磷灰石含量极少,因此说矿石属于低硫磷铁矿。磁铁矿与SiO2之间互为消长关系,即磁性铁含量高,SiO2降低。其他组分延走向、倾斜无明显变化。矿体出露于基岩表面,上覆3558m厚度的第四系砂砾层。经钻孔了解,矿体氧化深度基岩面下近20m,其氧化率3.4(3.5为氧化矿),属于混合矿石。20m以下属于原生矿(TFe:FeO比值小于2.7)。由于混合矿石氧化深度小未单独圈定。表4-3组合分析结果表分析结果()矿体号组合样号PSSiO2CuPbZnB10.0310.04947.260.0040.0080.05420.0510.08946.300.0040.0110.03830.0450.04544.360.0040.0110.0865、矿床成因矿床成因沉积变质铁矿是目前国内外分布最广,经济意义最大的铁矿类型。矿床成因的争论自本世13纪初迄今已达数十年之久。就铁质来源而言,主要有陆源说和火山说,从铁质富集作用上又分内生成因说(花岗岩化、混合岩化和热液交代等)和外生成因说(主要有原生沉积作用和氧化淋滤作用等)。沉积变质铁矿与其它矿产一样,是地壳长期演化的必然产物,是地壳不可分割的组成部分。只有在阐明地壳演化的从础上,才能真正理解沉积变质谈矿形成和富染的规津,进而达到科学的预测。随生产和科学技术的不断发展,人类已逐步由地表和浅部找矿时期转向深部找矿时期,沉积变质铁矿也不例外。所以,深人研究沉积变质铁矿成矿理论,应用新技术、新方法进行深部找矿实践,就显得更加重要,也就是所谓新技术、新方法在先进成矿理论指导下的应用。沉积变质铁矿成矿规律的研究,是进行科学预测的首要基础。5.1成因成因分析分析追溯本区铁矿形成过程的原始概貌,大体情况是:在太古代,地壳处于一种可塑状态向比较稳定的地槽发展过渡时期,全区处于原始水圈淹没的广阔大海。由于地壳较薄,塑性较强,海底火山活动频繁强烈,基性岩、中基性岩、中酸性的熔岩和凝灰岩大面积的多旋回地溢出和喷发,形成了大量的火山岩,并伴随一些基性和超基性的次火山岩和小侵入体。而沉积岩较少,主要是一些细粒的凝灰质粘土岩和粉砂岩。火山活动带来了丰富的铁质,在火山喷发的间歇宁静时期,沉积了众多的铁矿层。到了元古代,地槽进一步发展,地壳从塑性状态逐渐趋于硬化,火山活动减弱,沉积岩增多,并伴随铁矿的沉积。在此整个期间,构造作用、变质作用和溉合岩化作用多次发生,对岩层和矿层进行了强烈的改造。到了震旦亚代,本区转化为稳定的地块。5.1.1铁质来源铁质的来源有两种形式,一是火山喷溢过程中,大且的火山喷气、火山热水、火山灰粒可同时携带硅铁质,由于海底条件致冷效应大,并有一定的上覆海水压力,矿质不易散失,溶解于海水中,造成富集,沉积成矿。二是由于火山活动在其周围形成热的酸性水,对其下的基性火山岩发生作用,能从中溶滤汲取出铁质组分,溶解于海水中,集中起来,沉积成矿。5.1.2铁质运移形式14可能主要是低铁形式的FeCl2和Fe(HCO3)2,它们可以溶解于水,在底流的作用下进行运移,或者因氧化而形成细小的颗粒(氧化物或氢氧化物)呈悬浮状态被底流携带搬运。5.1.3铁质的沉淀在酸性水中溶解迁移的铁质,当水介质的环境改变或遇大陆水的加入,使其变为中性或弱碱性条件的时候,即发生沉淀作用形成铁矿层。铁质的沉淀形式可能是磁铁矿和菱铁矿,因为在地壳发展早期,无生物的光合作用,大气圈和水圈缺少游离氧,基本上处于一种还原环垅,不具备赤铁矿大规模形成的条件,因而磁铁矿应为主要原生沉积铁矿物,其次为菱铁矿。5.1.4条纹条带状构造的成因条纹条带状矿石构造是前寒武纪铁矿的一个突出特征,其成因多年来提出了许多观点。最为流行的是季节韵律说,认为在每年干旱季节PH7时,大陆风化带走氧化硅,而在潮湿季节pH7时,大陆风化带走铁,从而使硅铁在水盆地沉积时形成一层硅一层铁相互间隔的条带状构造。本区铁矿的条纹条带状构造可能是由于火山喷发活动的脉动性、旋回性,周期性地重复地供应硅铁质所造成的微韵律。根据实验,当铁质和硅质同时进入水体沉淀时,由于两者沉淀速度不同,铁质沉淀速度快首先沉积,硅质沉淀速度慢随后沉积,故而造成铁、硅一铁、硅分明的条纹和条带。5.1.5铁矿沉积的古地理环境根据铁矿在全区的广泛分布,但不连续,厚度变化大的基本特点,推断铁矿是在当时一个广阔的大海盆地中的许多被火山岛所分割的次级大小盆地中沉积的。铁矿的分布范围决定于当时的大海盆地规模,迁西群和滦县群所代表的太古代时期海盆面积广大,达上万平方公里,而朱杖了群所代表的下元古代时期海盆面积比较局限,是一个不足一千平方公里而受青龙河断裂影响的裂陷盆地。铁矿体的规模决定于次级沉积盆地大小和铁质来源的丰富程度及盆地的稳定程度和沉积时间的长短。表5.1沉积变质铁矿分类主要类型火山沉积型陆源沉积型火山陆源沉积型主要铁质来源与主要成矿作火山源(地壳深部源);火山沉积作用陆源(地壳浅部)为主;陆源沉积作用以火山源为主,也有陆源;火山沉积作用,也有陆源沉积作用155.2成矿规律成矿规律矿产预测的关键是对已知成矿规律的深入研究。只有客观、全面深刻地总结出已知成矿规律,才能进行科学地预测。沉积变质铁矿和其它矿产一样,产于地表或浅部的矿产已大多被发现和开采利用,关键是对较深部沉积变质铁矿的预测问题。实际资料表明,沉积变质铁矿主要受成矿时代、含铁建造和构造条件等控制。这也是预测的主要依据。5.2.1地壳演化对沉积变质铁矿形成的影响推动地壳发展的主要矛盾是地球内的核转变能与地球外太阳能的斗争。地球内核转变能主要引起内生地质作用(如岩浆侵人、火山喷发、变质作用、地震作用和地壳运动等),并形成岩浆岩、变质岩和各种内生矿产。地球外太阳能主要引起外生地质作用(如风化、剥蚀、搬运、用成矿时代元古代为主元古代(特别在1922亿年前)晚太古代为主构造条件产于所谓古老地槽中,海底火山喷发建造发育,位于陆壳与洋壳交界带或岛弧地带,海底火山喷发中心附近产于所谓古老地槽,缺乏或少有海底火山分发建造,位于陆壳边缘或内部,远离海底火山喷发中心产于所谓古老优地槽中,但位于陆源沉积区与海底火山喷发中心的过渡地区含铁建造特征主要为具斑状结构的富碱质的(NaK)中酸性火山岩(辉绿岩、细碧岩、斑岩、钠长斑岩或角斑岩、正长斑岩、含石英斑岩、凝灰质岩等),并多变为各种浅粒岩主要为大陆棚环境形成的石英岩、白云岩、黑色和红色铁质页岩和泥质板岩组合,还有火山岩以灰色或墨绿色的铁质燧石与赤铁矿、磁铁矿呈窄条状或薄层状互层产出,主要发育在晚太古代绿岩带(枕状安山岩、凝灰岩、火成碎屑岩、流纹岩、杂砂岩、交绿色石板片岩和黑色碳酸质页岩组成)中,并经受绿片岩相和角闪岩相的变质作用铁矿产出特征磁铁矿、赤铁矿呈层状产于成分稍有不同的浅粒岩接触带,即火山活动的间歇期,有大型富铁矿各沉积相(氧化相、硅酸盐相和碳酸盐相)的富铁矿呈薄条带状燧石岩产出,并在后期多形成特大型古风壳富铁矿铁矿产于酸性火山岩之上,本身又被安山质火山岩覆盖,铁矿与杂闪岩型沉积物共生。矿体呈透镜状或似层状产出我国相当的矿区和矿床东西鞍山、晋北吕梁、冀东司家营鞍山弓长岭、晋北五台、冀东迁安16沉积和硬结成岩等)并形成沉积岩和各种外生矿产。地壳发展史中主要矛盾的主要方面是逐步转化的。地壳发展前期(早太古代以前)以地球内核转变能为主,以后,逐渐转为地壳发展后期(元古代以后)以地球外太阳能为主。在早太占代以后至元古代期间为地球内核转变能与地球外太阳能相互斗争的过渡时期,也是沉积变质铁矿形成时期。5.2.1.1早太古代(35亿年前)地壳较薄,地热高。因地球内核转变能的广泛积累,火山发育,地壳活动性强,褶皱形态夏杂。本期以地球内核转变能为主要矛盾的主要方面,主要表现为火山活动广泛而强烈。这时沉积变质铁矿主要为与基性变质火山岩共生的条带状磁铁矿,是最古老的铁矿。铁质主要来源于地壳深处,通过火山作用而达到地壳表部。但因当时为酸性水圈,不利铁质沉积,同时地壳活动性强,也不利于物理化学分选作用的进行,故铁质不能大规模富集。5.2.1.2晚太古代(35到2725亿年前)绿岩带及与其毗连的花岗岩体广泛发育。典型的绿岩带主要由玄武岩一安山岩一英安岩、流纹岩的岩流和火山碎屑组成。在火山岩及其杂岩中间有与杂砂岩共生的条带状磁铁矿产出。地壳开始分化为所谓稳定的地台和活动的地槽。具明显的线性构造,深大断裂发育,随水圈、气圈(CO2型为主)的形成,太阳能引起的外生地质作用(主要是沉积作用)逐渐加强,而内生地质作用却逐渐减弱(主要表现为火山活动逐渐变弱)。开始生成原核生物(即能释放氧的光自养生物)。本期属地球内核转变能与地球外太阳能相互斗争的前期阶段,地球内核转变能仍占重要地位,这时沉积变质铁矿主要与海底火山活动的绿岩带共生,产于铁镁质一与长英质火山岩层的间断处,通常呈透镜状,长几米到几公里。铁质来源除主要来自火山作用外还部分来自地表风化作用。本类沉积变质铁布又称阿尔果马型。5.2.1.3早元古代(2725至1918亿年前)地壳分化为所谓稳定的地台和活动的地槽。水圈和气圈(主要由原始植物的光合作用产生游离氧使大气氧含量增多)逐渐接近现代情况,原核生物发育。这时地球外太阳能引起的外生地质作用显共加强,形成巨厚沉积地层。相反地球内核转变能引起的内生地质作用却明显减弱(主要表现为火山活动变弱,地壳活动性变小),属地球内核转变能与地球外太阳能相互斗争的后期阶段。地球外太阳能逐渐占有重要地位。本期形成当前规模最大的沉积变质铁矿,并多产于下部为火山岩、上部为厚而广的最老的碳酸盐相顶部,其上通常发育最老的红层。17本期铁质主要来自地壳浅部(包括陆壳、洋底和深层海水等)。地壳浅部的铁质由于氧、水和有机质的共同作用,而使铁原子发生转移。铁也可呈碳酸盐腐植质化合物,胶体溶液,特别是含铁矿物呈机械悬浮物状态转移,在有利的地质条件下(长期相对稳定的地质环境),使铁质经过充分的物理化学分选后,在长期不断缓慢下沉的古海盆中得以人规模沉积。引起铁质沉积的作用是多种多样的。如由于当时氧的浓度低,二氧化碳浓度高,不利于纯化学氧化的进行,而这种条件正适于铁细菌的生存。在漫长地质年代铁细菌摄取铁质和硅酸等无机物,把大量的氢氧化亚铁变为不溶性的二碱化二铁,而形成铁硅建造。近代新生铁矿的研究表明,铁矿多半是生话在沼泽湖泊中铁细菌生物化学沉积作用的产物。此外如京含溶解铁的潜水进人水盆地而发生的铁质沉。热液的形成,以及它们对海底深达儿公里含铁质岩石的相互作用(主要是淋滤作用)产生铁质而沉积。深部富含钙、铁、镁的海水循环到表层,由于氧含量的增加而发生的铁质沉积,由于当时水圈逐渐由酸性变为弱碱性,而开始有胶体以外的可溶性重碳酸铁的迁移,形成具碳酸盐条带的铁质沉积等等。正是由于这个时期铁质来源丰富,并可在多种沉积作用(特别是铁细菌的参予)下富集,这些原生含铁沉积经区域变质作用后形成大规模沉积变质铁矿。如哈默斯利、克里沃罗格、库尔斯克、苏必利尔等特大型沉积变质铁矿。5.2.1.4中晚元古代(19一18至6亿年前)地壳更趋于稳定。局部与深断裂有关的火山作用及地堑中的碎屑沉积发生。褶皱作用后沉积了巨厚砂砾岩和火山杂岩。生物大量繁殖,大气中游离氧增多。地球外太阳能在地壳发展中愈益占有重要位置。本期形成了陆源沉积为主的大规模沉积型铁矿。而以前形成的沉积变质铁矿,特别在早元古代形成的许多特大型沉积变质铁矿在适当地质条件下,经氧化淋滤作用而形成占风化壳型富铁矿。还有的沉积变质铁矿经后期热液(岩浆热液、变质水和混合宕化热液等)作用也可形成富铁矿。5.2.2原岩建造对铁矿的控制该矿区属于的火山-沉积岩系-硅铁建造,此建造为一套含不等量暗色矿物(辉石、闪石、黑云母)的斜长片麻岩类为主并夹有麻粒岩、斜长辉闪岩类的变质岩石组合。此建造的岩性岩相在时间上空间上变化也比较大,具有明显的韵律,表明火山活动的多旋回喷发,每个旋回差18不多都有铁矿的沉积,多个旋回往往具有多层矿体,主矿层多位于从基性酸性演化的一个较大旋回之末,或者说两个旋回之,表明铁矿沉积于火山活动的间歇期内。一个完整的旋回,其基本顺序规律是:基性-中性-酸性-凝灰质、粘土岩-硅铁建造,有的矿区旋回发育比较完整,有的矿区旋回发育不完整。5.2.3构造对铁矿的控制本区前震旦硅铁岩层沉积以后,经历了长期多次的构造作用,从而使原始简单层状的岩层和矿层遭受了褶皱、断裂、透镜体化、塑性变形等改造作用,形成了复杂多样的矿体形态和矿带分布格局,构造对矿体的改造作用是有一定规律的。5.2.3.1隆起与凹陷对区域性矿带分布的控制作用隆起的地区由于长期受剥蚀矿体保存不好,分布比较零星。凹陷地区矿层保存完好,但往往盖层厚、埋深大,情况不明,找矿的现实意义不大,隆起和凹陷的交接地区,盖层薄,矿层埋藏浅或出露地表,剥蚀程度较低,矿层保存较好,是找矿的最有利部位。5.2.3.2褶皱对铁矿的控制作用强烈褶皱是本区基底构造的突出特点,这对铁矿体的形态和分布有明显的控制作用。区域性的复式向斜构造控制着矿带的空间展布,与此相对应的复式背斜部位由于剥蚀作用强,矿体保存不好,往往零星残存,构不成密集的矿带。全区铁矿层由于受到同一次东西向强烈挤压作用,褶皱轴的方向基本上为南北向,轴面向西倾,由于后期构造的迭加作用,局部偏转呈北东向或北西向或呈弯曲的弧形褶皱。褶皱的枢纽具有一定的波状起伏变化,但总的趋势是向南倾伏,而向北抬起。这一特点对矿床的预测是很重要的。向斜部位保存矿体,背斜部位矿体剥蚀,是全区普遍的现象这些矿区中矿层的向斜构造形态是多种多样的。5.2.3.3断裂对铁矿的控制作用断裂对铁矿的控制作用有两重性,即破坏矿层完整性的一面和保护矿层免遭剥蚀的一面。本区在太古代阶段

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论