


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初中数学竞赛辅导资料(19)因式分解甲内容提要 和例题我们学过因式分解的四种基本方法:提公因式法,运用公式法,十字相乘法,分组分解法。下面再介紹两种方法1 添项拆项。是.为了分组后,能运用公式(包括配方)或提公因式例1因式分解:x4+x2+1a3+b3+c33abc分析:x4+1若添上2x2可配成完全平方公式解:x4+x2+1x4+2x2+1x2=(x2+1)2x2=(x2+1+x)(x2+1x)分析:a3+b3要配成(a+b)3应添上两项3a2b+3ab2解:a3+b3+c33abca3+3a2b+3ab2b3+c33abc3a2b3ab2 (a+b)3+c33ab(a+b+c) =(a+b+c)(a+b)2(a+b)c+c23 ab(a+b+c) =(a+b+c)(a2+b2+c2abacbc)例2因式分解:x311x+20a5+a+1 分析:把中项11x拆成16x+5x 分别与x5,20组成两组,则有公因式可提。(注意这里16是完全平方数) 解:x311x+20x316x+5x+20x(x216)+5(x+4)=x(x+4)(x4)+5(x+4) =(x+4)(x24x+5) 分析:添上a2 和a2两项,分别与a5和a+1组成两组,正好可以用立方差公式解:a5+a+1a5a2+a2+a+1=a2(a31)+ a2+a+1=a2(a1)( a2+a+1)+ a2+a+1= (a2+a+1)(a3a2+1)2 运用因式定理和待定系数法定理:若x=a时,f(x)=0, 即f(a)=0,则多项式f(x)有一次因式xa若两个多项式相等,则它们同类项的系数相等。例3因式分解:x35x2+9x62x313x2+3分析:以x=1,2,3,6(常数6的约数)分别代入原式,若值为0,则可找到一次因式,然后用除法或待定系数法,求另一个因式。解:x=2时,x35x2+9x60,原式有一次因式x 2,x35x2+9x6(x 2)(x23x+3,)分析:用最高次项的系数2的约数1,2分别去除常数项3的约数1,3得商1,2,再分别以这些商代入原式求值,可知只有当x=时,原式值为0。故可知有因式2x-1解:x=时,2x313x2+30,原式有一次因式2x1,设2x313x2+3(2x1)(x2+ax3),(a是待定系数)比较右边和左边x2的系数得2a113,a=62x313x+3(2x1)(x26x3)。例4因式分解2x2+3xy9y2+14x3y+20解:2x2+3xy9y2(2x3y)(x+3y),用待定系数法,可设2x2+3xy9y2+14x3y+20(2x3ya)(x+3yb),a,b是待定的系数,比较右边和左边的x和y两项 的系数,得解得2x2+3xy9y2+14x3y+20(2x3y+4)(x+3y+5)又解:原式2x2+(3y+14)x(9y2+3y20)这是关于x的二次三项式常数项可分解为(3y4)(3y+5),用待定系数法,可设2x2+(3y+14)x(9y2+3y20)mx(3y4)nx+(3y+5)比较左、右两边的x2和x项的系数,得m=2, n=12x2+3xy9y2+14x3y+20(2x3y+4)(x+3y+5)丙练习191 分解因式:x4+x2y2+y4 x4+4 x423x2y2+y42. 分解因式: x3+4x29 x341x+30 x3+5x218 x339x703. 分解因式:x3+3x2y+3xy2+2y3 x33x2+3x+7x39ax2+27a2x26a3 x3+6x2+11x+6a3+b3+3(a2+b2)+3(a+b)+24. 分解因式:3x37x+10 x311x2+31x21 x44x+3 2x35x2+15. 分解因式:2x2xy3y26x+14y8 (x23x3)(x2+3x+4)8(x+1)(x+2)(x+3)(x+4)48(2x7)(2x+5)(x29)916分解因式: x2y2+1x2y2+4xy x2y2+2x4y3x4+x22ax a+1 (x+y)4+x4+y4 (a+b+c)3(a3+b3+c3)7. 己知:n是大于1的自然数求证:4n2+1是合数8己知:f(x)=x2+bx+c, g(x)=x4+6x2+25, p(x)=3x4+4x2+28x+5 且知f(x)是g(x)的因式,也是p(x)的因式求:当x=1时,f(x)的值练习19答案1. 添项,配成完全平方式(仿例3) 2.拆中项,仿例13. 拆项,配成两数和的立方原式=(x+y)3+y3原式=(x-3a)3+a3 原式=(a+1)3+(b+1)34. 用因式定理,待定系数法,仿例5,6 x=时,原式=0,有因式2x15. 看着是某代数式的二次三项式,仿例7原式=(2x-7)(x+3)(2x-5)(x-3)-91=(2x2-x-8)(2x2-x-28)=6. 分组配方原式=(x2+1)2-(x+a)2 把原式用乘法展开,合
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025【合同范本】设备购买合同书
- 企业危机应对及公关管理工具箱
- 专升本考试题目及答案解析
- 主持人辩论题目及答案
- 营销团队销售业绩分析报告模板季度总结版
- 存货业务培训课件
- 农业种植联合体合作协议与资源共享计划
- 农村社区绿色发展项目合同
- 化工厂安全培训提升方案课件
- 2025建筑材料购销合同书
- (2025秋季)人教版八年级物理上册1.2 运动的描述(教学设计)
- 膜性肾病课件
- 网络意识形态课件
- 河南省天立教育2025-2026学年高三上学期开学联合考试语文含答案
- 2025年市场监督管理局公务员招录面试题及答案解析
- 《MATLAB数值计算基础与实例教程 》课件-第10章 其他数值计算的优化问题
- 2024-2025学年苏教版(2024)小学数学三年级上册(全册)教学设计(附目录P303)
- 党史宣讲面试题目及答案
- 输电线路清障作业方案
- 环氧酯树脂行业报告
- 提高员工执行力培训课件
评论
0/150
提交评论