




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2函数的零点与方程专项练,1.零点的定义:对于函数y=f(x),使f(x)=0的实数x叫做函数y=f(x)的零点.2.零点存在性定理:如果函数y=f(x)在区间a,b上的图象是一条连续曲线,且有f(a)f(b)54,D,4.已知函数f(x)=2ax-a+3,若x0(-1,1),f(x0)=0,则实数a的取值范围是()A.(-,-3)(1,+)B.(-,-3)C.(-3,1)D.(1,+),A,解析函数f(x)=2ax-a+3,由x0(-1,1),f(x0)=0,可得(-3a+3)(a+3)0,解得a(-,-3)(1,+).,5.已知函数f(x)=ex+x,g(x)=lnx+x,h(x)=lnx-1的零点依次为a,b,c,则()A.abcB.cbaC.cabD.bac,A,解析由f(a)=ea+a=0,得a=-ea0;b是函数y=lnx和y=-x图象交点的横坐标,画图(图略)可知0b1;由h(c)=lnc-1=0知c=e,所以abc.,6.已知函数f(x)=ax+x-b的零点x0(n,n+1)(nZ),其中常数a,b满足0b0)的大致图象.f(x)=-x2+2ex+m-1=-(x-e)2+m-1+e2,其图象的对称轴为x=e,开口向下,最大值为m-1+e2.故当m-1+e22e,即m-e2+2e+1时,y=g(x)与y=f(x)的图象有两个交点,即g(x)-f(x)=0有两个相异实根.m的取值范围是(-e2+2e+1,+).,A,二、填空题(共4小题,满分20分)13.(2018江苏,11)若函数f(x)=2x3-ax2+1(aR)在(0,+)内有且只有一个零点,则f(x)在-1,1上的最大值与最小值的和为.,-3,14.已知函数f(x)是定义在R上的奇函数,且当x(0,+)时,f(x)=2017x+log2017x,则f(x)在R上的零点的个数为.,3,15.已知函数f(x)=若函数g(x)=f(x)-2x恰有三个不同的零点,则实数m的取值范围是.,(1,2,解析函数g(x)=f(x)-2x恰有三个不同的零点,g(x)在m,+)上有一个零点,在(-,m)上有两个零点,16.已知函数f(x)=ex-e-x,下列命题正确的有.(写出所有正确命题的编号)f(x)是奇函数;f(x)在R上是单调递增函数;方程f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 充电设施标准化服务流程制定与执行考核试卷
- 解析卷-人教版八年级上册物理光现象《光的反射》单元测评试题(解析版)
- 2025年制造业中小企业边缘计算与云平台协同智能化升级认证考核试卷
- 2025年疫苗接种规范操作考试:疫苗接种政策影响分析方法考核试卷
- 2025年智慧冷链物流技术应用与系统集成水平考核试卷
- 考点解析人教版八年级上册物理《物态变化》章节练习试卷(含答案详解)
- 考点解析-人教版八年级上册物理物态变化《熔化和凝固》定向训练试卷
- 政教副校长在班主任工作会议上的讲话:学生安全不容丝毫松懈班主任成长从“管理细节”开始
- 考点攻克人教版八年级物理上册第5章透镜及其应用-生活中的透镜难点解析试卷(含答案详解版)
- 2024年皮革行业污染监测技术规范考核试卷
- 碳酸钙在生物医药中的应用-洞察分析
- 十八项核心制度
- 南通市2025届高三第一次调研测试(一模)历史试卷(含答案 )
- GB/T 44871-2024纺织品二异氰酸酯类化合物的测定
- 2025中级消防设施操作员作业考试题及答案(1000题)
- 《小学劳动教育研究的文献综述》3800字
- 物业项目开办物资明细表(参考)
- GB/T 44577-2024商用电动洗碗机性能测试方法
- 口腔颌面部间隙感染-颞、舌下、颏下、咽旁间隙感染
- 重度哮喘诊断与处理中国专家共识(2024)解读
- 2024-2030年中国光纤激光器行业发展趋势及投资风险分析研究报告
评论
0/150
提交评论