




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省青岛开发区十四中高三一轮复习数学椭圆几何性质专项练习1、已知P是椭圆上一点,F1和F2是焦点,若F1PF2=30,则PF1F2的面积为( )ABCD42、已知椭圆(0,0)的左焦点为F,右顶点为A,上顶点为B,若BFBA,则称其为“优美椭圆”,那么“优美椭圆”的离心率为 3、椭圆的两焦点为F1,F2,以F1F2为一边的正三角形的另两条边均被椭圆平分,则椭圆的离心率为 4、椭圆的焦点为、,点P为其上的动点,当为钝角时,点P横坐标的取值范围是_ _5、设AB是椭圆的长轴,点C在上,且,若AB=4,则的两个焦点之间的距离为 6、在平面直角坐标系中,椭圆的标准方程为,右焦点为,右准线为,短轴的一个端点为,设原点到直线的距离为,到的距离为,若,则椭圆的离心率为 .7、已知焦点在轴上的椭圆F1,F2是它的两个焦点,若椭圆上存在点P,使得,则的取值范围是 8、椭圆上的点到直线2x-y+3=0距离的最大值是 9、椭圆的左、右焦点分别是,离心率为,过且垂直于轴的直线被椭圆截得的线段长为1. ()求椭圆的方程; ()点是椭圆上除长轴端点外的任一点,连接,设的角平分线交 的长轴于点,求的取值范围;()在()的条件下,过点作斜率为的直线,使得与椭圆有且只有一个公共点,设直线的斜率分别为,若,试证明为定值,并求出这个定值. 10、如题(21)图,椭圆的中心为原点,长轴在轴上,离心率,过左焦点作轴的垂线交椭圆于两点,.(1)求该椭圆的标准方程;(2)取垂直于轴的直线与椭圆相交于不同的两点,过作圆心为的圆,使椭圆上的其余点均在圆外.若,求圆的标准方程.11、平面直角坐标系中,过椭圆的右焦点作直交于两点,为的中点,且的斜率为.()求的方程;()为上的两点,若四边形的对角线,求四边形面积的最大值.参考答案1、已知P是椭圆上一点,F1和F2是焦点,若F1PF2=30,则PF1F2的面积为( B )ABCD42、已知椭圆(0,0)的左焦点为F,右顶点为A,上顶点为B,若BFBA,则称其为“优美椭圆”,那么“优美椭圆”的离心率为 3、椭圆的两焦点为F1,F2,以F1F2为一边的正三角形的另两条边均被椭圆平分,则椭圆的离心率为 .4、椭圆的焦点为、,点P为其上的动点,当为钝角时,点P横坐标的取值范围是_ _5设AB是椭圆的长轴,点C在上,且,若AB=4,则的两个焦点之间的距离为_【答案】. 6、在平面直角坐标系中,椭圆的标准方程为,右焦点为,右准线为,短轴的一个端点为,设原点到直线的距离为,到的距离为,若,则椭圆的离心率为_.【答案】 7、已知焦点在轴上的椭圆F1,F2是它的两个焦点,若椭圆上存在点P,使得,则的取值范围是 8、椭圆上的点到直线2x-y+3=0距离的最大值是_9、椭圆的左、右焦点分别是,离心率为,过且垂直于轴的直线被椭圆截得的线段长为1.()求椭圆的方程; ()点是椭圆上除长轴端点外的任一点,连接,设的角平分线交 的长轴于点,求的取值范围;()在()的条件下,过点作斜率为的直线,使得与椭圆有且只有一个公共点,设直线的斜率分别为,若,试证明为定值,并求出这个定值. 【答案】解:()由于,将代入椭圆方程得 由题意知,即 又 所以, 所以椭圆方程为 ()由题意可知:=,=,设其中,将向量坐标代入并化简得:m(,因为, 所以,而,所以 (3)由题意可知,l为椭圆的在p点处的切线,由导数法可求得,切线方程为: ,所以,而,代入中得 为定值. 10、如题(21)图,椭圆的中心为原点,长轴在轴上,离心率,过左焦点作轴的垂线交椭圆于两点,.(1)求该椭圆的标准方程;(2)取垂直于轴的直线与椭圆相交于不同的两点,过作圆心为的圆,使椭圆上的其余点均在圆外.若,求圆的标准方程.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 移动互联网开发课程教学创新与改革
- 大桥拆除重建工程环境影响报告书
- 2025年传染病考试试题及答案
- 洗碗机营销策划方案
- 2025年功能性饮料在跑步训练市场推广的营销效果评估报告
- 邮政柜员资格题库及答案
- 长沙垃圾分类知识竞赛题及答案
- 2025年幼师招聘弹唱题库及答案
- 专业公文写作考试题及答案
- 2025年乡宁社区考试试题及答案
- 学校品牌塑造校园文化的关键因素报告
- 企业会计学学习资料
- 学校宿舍的卫生与定期清洁策略
- 危险化学品码头安全管理制度(3篇)
- 《电力机车构造(第2版)》课件 任务三 HXD3型电力机车空气管路系统分析
- 2019版 苏教版 高中通-用技术 必修 技术与设计1《第五章 设计图样的绘制》大单元整体教学设计2020课标
- 《列车运行图编制》课件
- 国际物流运输合同参考范本
- 劳动争议司法解释(二)亮点解读
- 四年级《书法》教案上册
- 四高人群的膳食营养理论考核试题及答案
评论
0/150
提交评论