




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一讲直线与圆(30分钟55分)一、选择题(每小题5分,共25分)1.已知三条直线x=1,x-2y-3=0,mx+y+2=0交于一点,则m的值为()A.1B.2C.-1D.-2【解析】选C.由方程组x=1,x-2y-3=0解得x=1,y=-1,代入mx+y+2=0中,得m-1+2=0,所以m=-1.2.点P(-1,1)关于直线ax-y+b=0的对称点是Q(3,-1),则a,b的值分别是()A.-2,2B.2,-2C.12,-12D.12,12【解析】选B.因为点P(-1,1)关于直线ax-y+b=0的对称点是Q(3,-1),所以a2-4=-1,a-1+32-1-12+b=0,所以a=2,b=-2.3.已知过定点P(2,0)的直线l与曲线y=2-x2相交于A,B两点,O为坐标原点,当AOB的面积最大时,直线l的倾斜角为()A.150B.135C.120D.30【解析】选A.设AOB=,则SAOB=12(2)2sin =sin 1,当且仅当=90时,取等号.此时,AOB为等腰直角三角形,如图,斜边为BA,斜边上的高为1,又因为OP=2,所以BPO=30,所以直线l的倾斜角为150.4.设直线x-y+m=0(mR)与圆(x-2)2+y2=4交于A,B两点,过A,B分别作x轴的垂线与x轴交于C,D两点.若线段CD的长度为7,则m=()A.1或3B.1或-3C.-1或3D.-1或-3【解析】选D.联立x-y+m=0,(x-2)2+y2=4得2x2+2(m-2)x+m2=0,则=-4(m2+4m-4).设C(x1,y1),D(x2,y2),则x1+x2=2-m,x1x2=m22,所以|CD|=|x1-x2|=(x1+x2)2-4x1x2=-m2-4m+4=7,解得m=-3或m=-1,此时0成立.5.已知圆(x+3)2+y2=64的圆心为M,设A为圆上任一点,点N的坐标为(3,0),线段AN的垂直平分线交MA于点P,则PMPN的取值范围是()A.67,8B.25,6C.17,7D.14,4【解析】选C.因为圆(x+3)2+y2=64的圆心为M,A为圆上任一点,点N的坐标为(3,0),线段AN的垂直平分线交MA于点P,所以P是AN的垂直平分线上一点,所以PA=PN,又因为AM=8,所以点P满足PM+PN=AM=8MN=6,即P点满足椭圆的定义,焦点是(3,0),(-3,0),半长轴a=4,故P点轨迹方程为x216+y27=1,因为PM+PN=8,所以PMPN=8-PNPN=8PN-1,因为1PN7,所以8PN87,8,所以PMPN17,7.二、填空题(每小题5分,共15分)6.已知直线x+y+m=0与圆x2+y2=2交于不同的两点A,B,O是坐标原点,|+|,那么实数m的取值范围是_.【解析】因为直线x+y+m=0与圆x2+y2=2交于相异两点A,B,所以O点到直线x+y+m=0的距离d2,又因为|+|,由平行四边形定理可知,夹角为钝角的邻边所对的对角线比夹角为锐角的邻边所对的对角线短,所以和的夹角为锐角.又因为直线x+y+m=0的斜率为-1,即直线与x的负半轴的夹角为45度,当和的夹角为直角时,直线与圆交于(-2,0),(0,-2)或(2,0),(0,2),此时原点与直线的距离为1,故d1,综合可知1d2,又d=|m|2,所以1|m|22,解得:-2m-2或2m43.(2)直线l的方程为y=k(x-1),代入圆C的方程得:(1+k2)x2-(2k2+6k+4)x+k2+6k+12=0,设M(x1,y1),N(x2,y2),则x1x2=k2+6k+121+k2,x1+x2=2k2+6k+41+k2,所以y1y2=k2(x1-1)(x2-1)=k2(x1x2-x1-x2+1)=9k21+k2,所以=x1x2+y1y2=10k2+6k+121+k2=12,解得k=3或k=0(舍),所以l的方程为3x-y-3=0.故圆心(2,3)在直线l上,所以|MN|=2r=2.【提分备选】已知直线l:y=k(x+1)+3与圆x2+y2=4交于A,B两点,过A,B分别做l的垂线与x轴交于C,D两点,若|AB|=4,则|CD|=_.【解析】由圆的方程x2+y2=4可知:圆心为(0,0),半径r=2.因为弦长为|AB|=4=2r,所以可以得知直线l经过圆心O.所以0=k(0+1)+3,解得k=-3,所以直线AB的方程为:y=-3x,设直线AB的倾斜角为,则tan =-3,所以=120,所以在RtAOC中,|CO|=212=4,那么|CD|=2|OC|=8.答案:8(20分钟20分)1.(10分)已知点P(2,0)及圆C:x2+y2-6x+4y+4=0.(1)若直线l过点P且与圆心C的距离为1,求直线l的方程.(2)设过点P的直线l1与圆C交于M,N两点,当|MN|=4时,求以线段MN为直径的圆Q的方程.(3)设直线ax-y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.【解析】(1)设直线l的斜率为k(k存在),则方程y-0=k(x-2),即kx-y-2k=0,又圆C的圆心为(3,-2),半径r=3,由|3k+2-2k|k2+1=1,解得k=-34.所以直线方程为y=-34(x-2),即3x+4y-6=0.当l的斜率不存在时,l的方程为x=2,经验证x=2也满足条件.综上所述,直线l的方程为x=2或3x+4y-6=0.(2)由于|CP|=5,而弦心距d=r2-|MN|22=5, 所以d=|CP|=5.所以P恰为MN的中点.故以MN为直径的圆Q的方程为(x-2)2+y2=4.(3)把直线y=ax+1,代入圆C的方程,消去y,整理得(a2+1)x2+6(a-1)x+9=0.由于直线ax-y-1=0交圆C于A,B两点,故=36(a-1)2-36(a2+1)0,即-2a0,解得a0.则实数a的取值范围是(-,0).设符合条件的实数a存在,由于l2垂直平分弦AB,故圆心C(3,-2)必在l2上.所以l2的斜率kPC=-2,而kAB=a=-1kPC,所以a=12.由于12(-,0),故不存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB.2.(10分)已知圆A:x2+y2+2x-15=0,过点B(1,0)作直线l(与x轴不重合)交圆A于C,D两点,过点B作AC的平行线交AD于点E.(1) 求点E的轨迹方程.(2)动点M在曲线E上,动点N在直线l:y=23上,若OMON,求证:原点O到直线MN的距离是定值.【解析】(1)如图,因为|AD|=|AC|,EBAC,故EBD=ACD=ADC,所以|EB|=|ED|,故|EA|+|EB|=|EA|+|ED|=|AD|.又圆A的标准方程为(x+1)2+y2=16,从而|AD|=4,所以|EA|+|EB|=4,由题设得A(-1,0),B(1,0),|AB|=2,由椭圆的定义可得点E的轨迹方程为x24+y23=1.(2)若直线ON的斜率不存在,则|ON|=23,|OM|=2,|MN|=4,原点O到直线MN的距离d=|OM|ON|MN|=3.若直线ON的斜率存在,设直线OM的方程为y=kx,代入x24+y23=1,得x2=123+4k2,y2=12k23+4k2,直线ON的方程为y=-1kx,代入y=2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 手术室护理不良事件培训
- 3.15消费者权益保护日专题活动策划与执行
- 幼儿平衡车培训方案
- 2025年餐饮管理专业能力考试试题及答案
- 2025年船舶工程师职业资格考试试卷及答案
- 2025年电商运营实务能力测试卷及答案
- 2025云南省初中学业水平考试数学
- 出纳半年工作总结和计划
- 口腔疾病护理知识
- 2025年湖北出租车司机上岗证考试题
- 服装工艺师岗位职责
- 深圳市体育场馆租赁合同
- 福建省厦门市厦门一中2024年数学高一下期末质量检测试题含解析
- 轴承座基本工艺专业课程设计
- MOOC 计算机系统局限性-华东师范大学 中国大学慕课答案
- MOOC 管理学原理-东北财经大学 中国大学慕课答案
- 《校园安全用电知识讲座》课件模板(三套)
- 中国十大名画
- 幼儿园教育事业统计领导小组会议纪要
- 边缘计算在工业互联网中的应用课件
- 家庭生活中的安全隐患及预防方法
评论
0/150
提交评论