一元一次方程应用题18种题型精讲.doc_第1页
一元一次方程应用题18种题型精讲.doc_第2页
一元一次方程应用题18种题型精讲.doc_第3页
一元一次方程应用题18种题型精讲.doc_第4页
一元一次方程应用题18种题型精讲.doc_第5页
免费预览已结束,剩余2页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

祝你成功!一元一次方程应用题知识点1、用列方程的方法解决实际问题的一般思路是分析数量关系,列出方程。2、列方程的实质就是用两种不同的方法来表示同一个量,建立等式。3、列方程解应用题的一般步骤是设未知数,列方程,解方程,求出方程的解。4、实际问题中的数量关系比较隐蔽,关键是审题,弄清问题背景,分析清楚数量关系,特别是找出可以作为列方程依据的相等关系。学习本专题注意事项:1.认真读题(很重要)2.找出有用的数据 3.找出等量关系(具体见下分析),列方程; 有时可能找到不止一个等量关系,用一个可以将所有数据都用到的等量关系列方程,其他的用已知数据表示上等量关系中的量,注意等量关系不能重复使用(如3. 劳力调配问题例)4.设未知量时设一个好列方程的量为x,若找不到,直接设所问的量为x1. 和、差、倍、分问题: (1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率”来体现。 (2)多少关系:通过关键词语“多、少、和、差、不足、剩余”来体现。 例.根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2001年11月1日0时,全国每10万人中具有小学文化程度的人口为35701人,比1990年7月1日减少了3.66%,1990年6月底每10万人中约有多少人具有小学文化程度? 分析:等量关系为:两年的百分比之间的关系为: 90年的-3.66%=01年的解:设1990年6月底每10万人中约有x人具有小学文化程度 X100000-3.66%=357011000002. 等积变形问题: “等积变形”是以形状改变而体积或面积不变为前提。常用等量关系为: 形状面积变了,周长没变; 原料体积成品体积。例. 用直径为90mm的圆柱形玻璃杯(已装满水)向一个由底面积为内高为81mm的长方体铁盒倒满水时,玻璃杯中的水的高度下降多少mm?(结果保留整数) 分析:等量关系为:圆柱形玻璃杯倒出的水体积长方体铁盒的体积 解:玻璃杯中的水的高度下降多少x mm3. 劳力调配问题: 这类问题要搞清人数的变化,常见题型有: (1)既有调入又有调出; (2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。 例. 甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。 分析:等量关系(1)原来甲车间的人数+100=(原来乙车间的人数-100) 6(2)原来甲车间的人数-100=原来乙车间的人数+100 解:设求原来乙车间的x人,由等量关系(2)得原来甲车间的人数=x+200,代入(1)中得方程 x+200+100=(x-100) 64. 比例分配问题: 这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。 常用等量关系:各部分之和总量, 比值相等 例. 三个正整数的比为1:2:4,它们的和是84,那么这三个数中最大的数是几?解;设最小的数为x,则中间数为2x,最大数字为4x x+2x+4x=84 5. 数字问题 (1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1a9, 0b9, 0c9)则这个三位数表示为:100a+10b+c。(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n2表示;奇数用2n+1或2n1表示。例. 一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数分析:等量关系:(1)现在的两位数-原来的两位数=36(2)原来的两位数个位上的数=十位上的数2解:原来的两位数十位上的数为x,则由(2)得原来的两位数个位上的数为2x现在的两位数=2x10+x,所以由(1)得方程(2x10+x) - (x10+2x)=36 现在的两位数 原来的两位数6. 工程问题: 工程问题中的三个量及其关系为:工作总量=工作效率工作时间 经常在题目中未给出工作总量时,设工作总量为单位1,则工作效率=1/工作时间例. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程? 分析:设工程总量为单位1,等量关系为:甲、乙合作3天后+乙单独完成剩下工程=1解:设乙还要x天才能完成全部工程7. 行程问题:(1)行程问题中的三个基本量及其关系: 路程=速度时间。 (2)基本类型有 相遇问题; 追及问题;常见的还有:相背而行;行船问题;环形跑道问题。 (3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。并且还常常借助画草图来分析,理解行程问题。 例. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。 (1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇? (2)两车同时开出,相背而行多少小时后两车相距600公里? (3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里? (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车? (5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? 此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。故可结合图形分析。 (1)分析:相遇问题,画图表示为: 等量关系是:慢车路程+快车路程=480, 慢车时间=快车时间+1小时解:设快车开出t小时后两车相遇140t+90(t+1)=480(2)分析:相背而行,画图表示为: 等量关系是:慢车路程+快车路程+480=600,慢车时间=快车时间解:相背而行t小时后两车相距600公里 140t+90t+480=600(3)分析:追及问题,画图表示为 等量关系为:快车路程+480公里慢车路程=600公里, 慢车时间=快车时间解:设x小时后两车相距600公里, 140t+480-90t=600(4)分析:追及问题,画图表示为: 等量关系为:慢车路程+480公里=快车路程, 慢车时间=快车时间解:设t小时后快车追上慢车90t+480=140t(5)分析:追及问题画图表示为: 等量关系为:快车的路程=慢车走的路程+480公里,慢车时间=快车时间+1解:快车开出后t小时追上慢车140t=90(t+1)+4808. 利润赢亏问题(1)销售问题中常出现的量有:进价、售价、标价、利润等(2)有关关系式:商品利润=商品售价商品进价=商品标价折扣率商品进价商品利润率=商品利润/商品进价 商品售价=商品标价折扣率例. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?分析:探究题目中隐含的条件是关键,可直接设成本为x元进价折扣率标价优惠价利润x元8折(1+40%)x元80%(1+40%)x15元等量关系:利润=折扣后价格进价, 折扣后价格进价=15解:设进价为x元, 80%(1+40%)x-x =159. 储蓄问题(1) 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税(2)利息=本金年利率期数 本息和=本金+利息 利息税=利息税率(20%)(3)年存储利息=本金年利率年数 注意 银行给利率都是年利率 期数的单位为年例. 某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)分析:等量关系:本息和=本金+本金利率期数,半年的期数为1/2年解:设半年期的年利率为x,250+250x1/2=252.710行船问题:顺水航速=静水船速+水流速度, 逆水航速=静水船速-水流速度 。例. 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?分析:等量关系:顺水航行距离=逆水航行距离解:设船在静水中的速度为x千米每小时2(x+3)=3(x-3)11年龄问题:注意比对象的年龄也同时在增长例:甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是?分析:等量关系:(1)甲的年龄-乙的年龄=15,(2)5年前甲的年龄=5年前乙的年龄2解:设乙现在的年龄是x岁,由等量关系(1)得甲的现在的年龄是x+15岁再由等量关系(2)得方程 x+15-5=(x-5) 212配套问题:各件的总数比例和每一套中各件的比例相等例:机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?分析:等量关系:大齿轮总数小齿轮总数=一套中的大齿轮数一套中的小齿轮数 加工大齿轮工人+加工小齿轮工人=85解:设x名工人加工大齿轮,则加工小齿轮的工人有85-x人 16x:10(85-x)=2:313增长率问题:增长率 = 增长量原来的产量 或 增长量=原来的产量增长率例:某印刷厂第三季度印刷了科技书籍50万册,而第四季度印刷了58万册,求季度的增长率是多少?解:设增长率为x 58-50=50 X14浓度问题:1.浓度=物质的纯质量(物质的纯质量+水) 2.一定注意物质的纯质量的变化和总得溶液的质量的变化例:某化工厂现有浓度为15%的稀硫酸175千克,要把它配成浓度为25%的硫酸,需要加入浓度为50的硫酸多少千克?分析:等量关系:15%的稀硫酸中的纯硫酸+50的硫酸中的纯硫酸=25%的硫酸中的纯硫酸17515%+50x=25%(x+175) 配成浓度为25%的硫酸的总质量15古典数学:例:有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?分析:鸡和兔各一个头,所以等量关系(1)鸡+兔=88,鸡两只脚 ,兔有4只脚 ,所以等量关系(2)鸡脚+兔脚=244解:设鸡有x只,则兔有88-x 只2x+4(88-x)=24416方案设计与成本分析:1.我省某地生产的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售每吨获利7500元。当地一家农工商企业收购这种蔬菜140吨,该企业加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16吨,如果进行细加工,每天可以加工6吨,但两种加工方式不能同时进行。受季节条件限制,企业必须在15天的时间将这批蔬菜全部销售或加工完毕,企业研制了三种可行方案。方案一:将蔬菜全部进行粗加工;方案二:尽可能多的对蔬菜进行精加工,来不及进行加工的蔬菜,在市场上直接销售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好用15天。你认为哪种方案获利最多?为什么2.牛奶加工厂现有鲜奶8吨,若在市场上直接销售鲜奶(每天可销售8吨),每吨可获利润500元;制成酸奶销售,每加工1吨鲜奶可获利润1200元;制成奶片销售,每加工1吨鲜奶可获利润2000元该厂的生产能力是:若制酸奶,每天可加工3吨鲜奶;若制奶片,每天可加工1吨鲜奶;受人员和设备限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕请你帮牛奶加工厂设计一种方案,使这8吨鲜奶既能在4天内全部销售或加工完毕,又能获得你认为最多的利润3.某市剧院举办大型文艺演出,其门票价格为:一等席300元人,二等席200元人,三等席150元人,某公司组织员工36人去观看,计划用5850元购买2种门票,请你帮助公司设计可能的购票方案。4.小明家搬了新居要购买新冰箱,小明和妈妈在商场看中了甲、乙两种冰箱其中,甲冰箱的价格为2100元,日耗电量为1度;乙冰箱是节能型新产品,价格为2220元,日耗电量为0.5度,并且两种冰箱的效果是相同的.老板说甲冰箱可以打折,但是乙冰箱不能打折,请你就价格方面计算说明,甲冰箱至少打几折时购买甲冰箱比较合算?(每度电0.5元,两种冰箱的使用寿命均为10年,平均每年使用300天)17设辅助未知数:1.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总票数的,若提前购票,则给予不同程度的优惠.在五月份内,团体票每张12元,共售出团体票的,零售票每张16元,共售出零售票的一半,如果在六月份内,团体票按16元出售,并

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论