




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
路由协议详解路由器的工作不外乎两个,一是路径选择,二是数据转发。进行数据转发相对容易一些,难的是如何判断到达目的网络的最佳路径。所以,路径选择就成了路由器最重要的工作。 许多路由协议可以完成路径选择的工作,常见的有RIP,OSPF,IGRP和 EIGRP协议等等。这些算法中,我们不能简单的说谁好谁坏,因为算法的优劣要依据使用的环境来判断。比如RIP协议,它有时不能准确地选择最优路径,收敛的时间也略显长了一些,但对于小规模的,没有专业人员维护的网络来说,它是首选的路由协议,我们看中的是它的简单性。如果你手头正有一个小的网络项目,那么,就让我们来安排一个计划,30分钟读完本文(一读),20分钟再细看一遍本文提及的命令和操作方法(二读),用30分钟配置网络上的所有路由器(小网络,没有几台路由器可以配的),最后20分钟,检查一下网络工作是否正常。好了,一百分钟,你的RIP网络运转起来了。就这么简单,不信,请继续往下看。一、RIP是什么RIP(Routing Information Protocols,路由信息协议)是使用最广泛的距离向量协议,它是由施乐(Xerox)在70年代开发的。当时,RIP是XNS(Xerox Network Service,施乐网络服务)协议簇的一部分。TCP/IP版本的RIP是施乐协议的改进版。RIP最大的特点是,无论实现原理还是配置方法,都非常简单。度量方法RIP的度量是基于跳数(hops count)的,每经过一台路由器,路径的跳数加一。如此一来,跳数越多,路径就越长,RIP算法会优先选择跳数少的路径。RIP支持的最大跳数是15,跳数为16的网络被认为不可达。路由更新RIP中路由的更新是通过定时广播实现的。缺省情况下,路由器每隔30秒向与它相连的网络广播自己的路由表,接到广播的路由器将收到的信息添加至自身的路由表中。每个路由器都如此广播,最终网络上所有的路由器都会得知全部的路由信息。正常情况下,每30秒路由器就可以收到一次路由信息确认,如果经过180秒,即6个更新周期,一个路由项都没有得到确认,路由器就认为它已失效了。如果经过240秒,即8个更新周期,路由项仍没有得到确认,它就被从路由表中删除。上面的30秒,180秒和240秒的延时都是由计时器控制的,它们分别是更新计时器(Update Timer)、无效计时器(Invalid Timer)和刷新计时器(Flush Timer)。路由循环距离向量类的算法容易产生路由循环,RIP是距离向量算法的一种,所以它也不例外。如果网络上有路由循环,信息就会循环传递,永远不能到达目的地。为了避免这个问题,RIP等距离向量算法实现了下面4个机制。水平分割(split horizon)。水平分割保证路由器记住每一条路由信息的来源,并且不在收到这条信息的端口上再次发送它。这是保证不产生路由循环的最基本措施。毒性逆转(poison reverse)。当一条路径信息变为无效之后,路由器并不立即将它从路由表中删除,而是用16,即不可达的度量值将它广播出去。这样虽然增加了路由表的大小,但对消除路由循环很有帮助,它可以立即清除相邻路由器之间的任何环路。触发更新(trigger update)。当路由表发生变化时,更新报文立即广播给相邻的所有路由器,而不是等待30秒的更新周期。同样,当一个路由器刚启动RIP时,它广播请求报文。收到此广播的相邻路由器立即应答一个更新报文,而不必等到下一个更新周期。这样,网络拓扑的变化会最快地在网络上传播开,减少了路由循环产生的可能性。抑制计时(holddown timer)。一条路由信息无效之后,一段时间内这条路由都处于抑制状态,即在一定时间内不再接收关于同一目的地址的路由更新。如果,路由器从一个网段上得知一条路径失效,然后,立即在另一个网段上得知这个路由有效。这个有效的信息往往是不正确的,抑制计时避免了这个问题,而且,当一条链路频繁起停时,抑制计时减少了路由的浮动,增加了网络的稳定性。即便采用了上面的4种方法,路由循环的问题也不能完全解决,只是得到了最大程度的减少。一旦路由循环真的出现,路由项的度量值就会出现计数到无穷大(Count to Infinity)的情况。这是因为路由信息被循环传递,每传过一个路由器,度量值就加1,一直加到16,路径就成为不可达的了。RIP选择16作为不可达的度量值是很巧妙的,它既足够的大,保证了多数网络能够正常运行,又足够小,使得计数到无穷大所花费的时间最短。邻居有些网络是NBMA(Non-Broadcast MultiAccess,非广播多路访问)的,即网络上不允许广播传送数据。对于这种网络,RIP就不能依赖广播传递路由表了。解决方法有很多,最简单的是指定邻居(neighbor),即指定将路由表发送给某一台特定的路由器。RIP的缺陷RIP虽然简单易行,并且久经考验,但是也存在着一些很重要的缺陷,主要有以下几点:过于简单,以跳数为依据计算度量值,经常得出非最优路由;度量值以16为限,不适合大的网络;安全性差,接受来自任何设备的路由更新;不支持无类IP地址和VLSM(Variable Length Subnet Mask,变长子网掩码);收敛缓慢,时间经常大于5分钟;消耗带宽很大。OSPF协议介绍OSPF是一种典型的链路状态路由协议。采用OSPF的路由器彼此交换并保存整个网络的链路信息,从而掌握全网的拓扑结构,独立计算路由。因为RIP路由协议不能服务于大型网络,所以,IETF的IGP工作组特别开发出链路状态协议OSPF。目前广为使用的是OSPF第二版,最新标准为RFC2328。 OSPF作为一种内部网关协议(Interior Gateway Protocol,IGP),用于在同一个自治域(AS)中的路由器之间发布路由信息。区别于距离矢量协议(RIP),OSPF具有支持大型网络、路由收敛快、占用网络资源少等优点,在目前应用的路由协议中占有相当重要的地位。 基本概念和术语 1. 链路状态 OSPF路由器收集其所在网络区域上各路由器的连接状态信息,即链路状态信息(Link-State),生成链路状态数据库(Link-State Database)。路由器掌握了该区域上所有路由器的链路状态信息,也就等于了解了整个网络的拓扑状况。OSPF路由器利用“最短路径优先算法(Shortest Path First, SPF)”,独立地计算出到达任意目的地的路由。 2. 区域 OSPF协议引入“分层路由”的概念,将网络分割成一个“主干”连接的一组相互独立的部分,这些相互独立的部分被称为“区域” (Area),“主干”的部分称为“主干区域”。每个区域就如同一个独立的网络,该区域的OSPF路由器只保存该区域的链路状态。每个路由器的链路状态数据库都可以保持合理的大小,路由计算的时间、报文数量都不会过大。 3. OSPF网络类型 根据路由器所连接的物理网络不同,OSPF将网络划分为四种类型:广播多路访问型(Broadcast MultiAccess)、非广播多路访问型(None Broadcast MultiAccess,NBMA)、点到点型(Point-to-Point)、点到多点型(Point-to-MultiPoint)。 广播多路访问型网络如:Ethernet、Token Ring、FDDI。NBMA型网络如:Frame Relay、X.25、SMDS。Point-to-Point型网络如:PPP、HDLC。具体结构如后图所示。 4. 指派路由器(DR)和备份指派路由器(BDR) 在多路访问网络上可能存在多个路由器,为了避免路由器之间建立完全相邻关系而引起的大量开销,OSPF要求在区域中选举一个DR。每个路由器都与之建立完全相邻关系。DR负责收集所有的链路状态信息,并发布给其他路由器。选举DR的同时也选举出一个BDR,在DR失效的时候,BDR担负起DR的职责。 点对点型网络不需要DR,因为只存在两个节点,彼此间完全相邻。 协议组成 OSPF协议由Hello协议、交换协议、扩散协议组成。本文仅介绍Hello协议,其他两个协议可参考RFC2328中的具体描述。 当路由器开启一个端口的OSPF路由时,将会从这个端口发出一个Hello报文,以后它也将以一定的间隔周期性地发送Hello报文。OSPF路由器用Hello报文来初始化新的相邻关系以及确认相邻的路由器邻居之间的通信状态。 对广播型网络和非广播型多路访问网络,路由器使用Hello协议选举出一个DR。在广播型网络里,Hello报文使用多播地址224.0.0.5周期性广播,并通过这个过程自动发现路由器邻居。在NBMA网络中,DR负责向其他路由器逐一发送Hello报文。 协议操作 第一步:建立路由器的邻接关系 所谓“邻接关系”(Adjacency)是指OSPF路由器以交换路由信息为目的,在所选择的相邻路由器之间建立的一种关系。 路由器首先发送拥有自身ID信息(Loopback端口或最大的 IP地址)的Hello报文。与之相邻的路由器如果收到这个Hello报文,就将这个报文内的ID信息加入到自己的Hello报文内。 如果路由器的某端口收到从其他路由器发送的含有自身ID信息的Hello报文,则它根据该端口所在网络类型确定是否可以建立邻接关系。 在点对点网络中,路由器将直接和对端路由器建立起邻接关系,并且该路由器将直接进入到第三步操作:发现其他路由器。若为MultiAccess 网络, 该路由器将进入选举步骤。 第二步:选举DR/BDR 不同类型的网络选举DR和BDR的方式不同。 MultiAccess网络支持多个路由器,在这种状况下, OSPF需要建立起作为链路状态和LSA更新的中心节点。选举利用Hello报文内的ID和优先权(Priority)字段值来确定。优先权字段值大小从0到255,优先权值最高的路由器成为DR。如果优先权值大小一样,则ID值最高的路由器选举为DR, 优先权值次高的路由器选举为BDR。优先权值和ID值都可以直接设置。 第三步:发现路由器 在这个步骤中,路由器与路由器之间首先利用Hello报文的ID信息确认主从关系,然后主从路由器相互交换部分链路状态信息。每个路由器对信息进行分析比较,如果收到的信息有新的内容,路由器将要求对方发送完整的链路状态信息。这个状态完成后,路由器之间建立完全相邻(Full Adjacency)关系,同时邻接路由器拥有自己独立的、完整的链路状态数据库。 在MultiAccess网络内,DR与BDR互换信息,并同时与本子网内其他路由器交换链路状态信息。 在Point-to-Point 或 Point-to-MultiPoint网络中,相邻路由器之间互换链路状态信息。 第四步: 选择适当的路由器 当一个路由器拥有完整独立的链路状态数据库后,它将采用SPF算法计算并创建路由表。OSPF路由器依据链路状态数据库的内容,独立地用SPF算法计算出到每一个目的网络的路径,并将路径存入路由表中。 OSPF 利用量度(Cost)计算目的路径,Cost最小者即为最短路径。在配置OSPF路由器时可根据实际情况,如链路带宽、时延或经济上的费用设置链路Cost大小。Cost越小,则该链路被选为路由的可能性越大。 第五步:维护路由信息 当链路状态发生变化时,OSPF通过Flooding 过程通告网络上其他路由器。OSPF路由器接收到包含有新信息的链路状态更新报文,将更新自己的链路状态数据库,然后用SPF算法重新计算路由表。在重新计算过程中,路由器继续使用旧路由表,直到SPF完成新的路由表计算。新的链路状态信息将发送给其他路由器。值得注意的是,即使链路状态没有发生改变,OSPF路由信息也会自动更新,默认时间为30分钟。OSPF路由器之间使用链路状态通告(LSA)来交换各自的链路状态信息,并把获得的信息存储在链路状态数据库中。 各OSPF路由器独立使用SPF算法计算到各个目的地址的路由。 OSPF协议支持分层路由方式,这使得它的扩展能力远远超过RIP协议。当OSPF网络扩展到100、500甚至上千个路由器时,路由器的链路状态数据库将记录成千上万条链路信息。为了使路由器的运行更快速、更经济、占用的资源更少,网络工程师们通常按功能、结构和需要把OSPF网络分割成若干个区域,并将这些区域和主干区域根据功能和需要相互连接从而达到分层的目的。 目录 OSPF分层路由的思想OSPF中的四种路由器OSPF链路状态公告类型OSPF区域类型报文在OSPF多区域网络中发送的过程 OSPF分层路由的思想 OSPF把一个大型网络分割成多个小型网络的能力被称为分层路由,这些被分割出来的小型网络就称为“区域”(Area)。由于区域内部路由器仅与同区域的路由器交换LSA信息,这样LSA报文数量及链路状态信息库表项都会极大减少,SPF计算速度因此得到提高。多区域的OSPF必须存在一个主干区域,主干区域负责收集非主干区域发出的汇总路由信息,并将这些信息返还给到各区域。 OSPF区域不能随意划分,应该合理地选择区域边界,使不同区域之间的通信量最小。但在实际应用中区域的划分往往并不是根据通信模式而是根据地理或政治因素来完成的。 OSPF中的四种路由器 在OSPF多区域网络中,路由器可以按不同的需要同时成为以下四种路由器中的几种: 1. 内部路由器:所有端口在同一区域的路由器,维护一个链路状态数据库。 2. 主干路由器:具有连接主干区域端口的路由器。 3. 区域边界路由器(ABR): 具有连接多区域端口的路由器,一般作为一个区域的出口。ABR为每一个所连接的区域建立链路状态数据库,负责将所连接区域的路由摘要信息发送到主干区域,而主干区域上的ABR则负责将这些信息发送到各个区域。 4. 自治域系统边界路由器(ASBR): 至少拥有一个连接外部自治域网络(如非OSPF的网络)端口的路由器,负责将非OSPF网络信息传入OSPF网络。 OSPF链路状态公告类型 OSPF路由器之间交换链路状态公告(LSA)信息。OSPF的LSA中包含连接的接口、使用的Metric及其他变量信息。OSPF路由器收集链接状态信息并使用SPF算法来计算到各节点的最短路径。LSA也有几种不同功能的报文,在这里简单地介绍一下: LSA TYPE 1:由每台路由器为所属的区域产生的LSA,描述本区域路由器链路到该区域的状态和代价。一个边界路由器可能产生多个LSA TYPE1。 LSA TYPE 2:由DR产生,含有连接某个区域路由器的所有链路状态和代价信息。只有DR可以监测该信息。 LSA TYPE 3:由ABR产生,含有ABR与本地内部路由器连接信息,可以描述本区域到主干区域的链路信息。它通常汇总缺省路由而不是传送汇总的OSPF信息给其他网络。 LSA TYPE 4:由ABR产生,由主干区域发送到其他ABR, 含有ASBR的链路信息,与LSA TYPE 3的区别在于TYPE 4描述到OSPF网络的外部路由,而TYPE 3则描述区域内路由。 LSA TYPE 5:由ASBR产生,含有关于自治域外的链路信息。除了存根区域和完全存根区域,LSA TYPE 5在整个网络中发送。 LSA TYPE 6:多播OSPF(MOSF),MOSF可以让路由器利用链路状态数据库的信息构造用于多播报文的多播发布树。 LSA TYPE 7:由ASBR产生的关于NSSA的信息。LSA TYPE 7可以转换为LSA TYPE 5。 OSPF区域类型 前述的四种路由器可以构成五种类型的区域,这五种区域的主要区别在于它们和外部路由器间的关系: 标准区域: 一个标准区域可以接收链路更新信息和路由总结。 主干区域(传递区域):主干区域是连接各个区域的中心实体。主干区域始终是“区域0”,所有其他的区域都要连接到这个区域上交换路由信息。主干区域拥有标准区域的所有性质。 存根区域:存根区域是不接受自治系统以外的路由信息的区域。如果需要自治系统以外的路由,它使用默认路由0.0.0.0。 完全存根区域:它不接受外部自治系统的路由以及自治系统内其他区域的路由总结。需要发送到区域外的报文则使用默认路由:0.0.0.0。完全存根区域是Cisco自己定义的。 不完全存根区域(NSAA): 它类似于存根区域,但是允许接收以LSA Type 7发送的外部路由信息,并且要把LSA Type 7转换成LSA Type 5。 区分不同OSPF区域类型的关键在于它们对外部路由的处理方式。外部路由由ASBR传入自治系统内,ASBR可以通过RIP或者其他的路由协议学习到这些路由。 报文在OSPF多区域网络中发送的过程 首先,区域内部的路由器最初使用LSA TYPE 1或LSA TYPE 2对本区域内的路径信息进行交换并计算出相应的路由表项。当路由器的链路信息在区域内部路由达到统一后,ABR才能发送LSA摘要报文(LSA TYPE 3或LSA TYPE 4)给其他区域。其他区域路由器可以根据这些摘要信息计算相应到达本区域以外的路由表项。最后,除了存根区域,所有路由器根据ASBR所发送的LSA TYPE 5计算出到达自治域外的路由表项。 为减少LSA报文,LSA摘要信息可以通过合理地分配IP地址和配置路由摘要提高效率。 在OSPF多区域网络中,主干区域必须保持全连通状态,即每个其他区域必须直接与主干区域Area0有连接才能交换区域间的路由信息。但在实际应用中,因为各种原因很难避免有些区域无法直接与Area0相连,为了解决这个问题,OSPF协议中定义了虚链路的概念使一个连接主干的区域连接第三方区域。在图2中,Area43与Area0的连接就是Lab_C通过虚链路与Lab_B实现的。IGRP协议简介 IGRP (Interior Gateway Routing Protocol)是一种动态距离向量路由协议,它由Cisco公司八十年代中期设计。使用组合用户配置尺度,包括延迟、带宽、可靠性和负载。 IGRP 是Cisco 开发的私有协议,是为了弥补RIP 不足的地方而开发的.它的管理距离AD 为100,它有着和RIP 类似的特性,比如都是距离矢量(distance vector)路由协议,都通过广播的方式周期性的广播完整的路由表(除了被水平分割法则抑制的路由以外.并且它也会在网络的边界上进行路由汇总。不像RIP 是使用UDP 520 端口,IGRP 是直接通过IP 层进行IGRP 信息交换,协议号为9.IGRP 还使用AS 的概念.如下图:498)this.style.width=498;AS 10 中有2 个进程域(process domain),分别是IGRP 20 和IGRP 30,(分别定义的是AS 20 和AS 30).这样就起到一个隔离通信量的作用,AS 20 和AS 30 之间可以通过路由的再发布(redistribute)来进行通信在IGRP 的update 包里,把路由条目分为了3 个类别,如下:1.内部路由(interior route):被宣告的路由条目是本地化的2.系统路由(system route):到达被边界路由器汇总的网络地址的路由3.外部路由(exterior route):来自外部,比如其他的AS 的路由IGRP Timers and Stability FeaturesIGRP 的update 包发送周期为90 秒,是RIP 的3 倍,但是为防止timer 的同步,一般这个期为72 到90 秒之间的随机数当一条路由初次被学习到以后,这条路由的invalid timer 就设置为270 秒(RIP 的3倍).flush timer 被设置为630 秒(update 发送周期的7 倍).每次接收到该路由的update包以后,这些timer 都会重新的初始化.如果在invalid timer 超出,仍然没接收到该路由的update,那么该路由就标记为不可达,但是该路由仍然会保存在路由表中,并且以目标不可达的方式宣告出去,直到flush timer 超出,该路由就被彻底从路由表中删除.IGRP 使用了3 倍于RIP 的timer, 优点是节约了链路的带宽, 但是缺点是收敛(convergence)慢于RIP.比如当一台路由器出问题down 掉了IGRP 要用3 倍于RIP 的时间才能检测到该路由器状态的变化当一条路由标记为不可达的时候,或者下一跳的路由器增大了到达目标地址的metric 并引起触发更新(triggered update),那么该路由将进入holddown 状态,并且holddowntimer 的长度为3 倍update 发送时间再加10 秒(280 秒).这个时候,关于目标地址的任何新的信息都不会被接受直到holddown timer 超出.可以使用命令no metric holddown来关闭这个holddown 特性,一般在一个无环路的网络拓扑里,holddown 特性是没什么用的,关闭这一特性有助于加快收敛时间各种timer 的修改命令如下:timers basic update invalid holddown flush sleeptime参数sleeptime 的单位是毫秒(ms),用来在接收到一个triggered update 以后,延迟普通的路由update当你要调整这些timer 的时候,应该注意的是整个AS 内要统一的调整。缺省情况下,IGRP每90秒发送一次路由更新广播,在3个更新周期内(即270秒),没有从路由中的第一个路由器接收到更新,则宣布路由不可访问。在7个更新周期即630秒后,Cisco IOS 软件从路由表中清除路由。 1.有关命令498)this.style.width=498; 注:1、autonomous-system可以随意建立,并非实际意义上的autonomous-system,但运行IGRP的路由器要想交换路由更新信息其autonomous-system需相同。2举例498)this.style.width=498; Router1: router igrp 200 network 192.200.10.0 network 192.20.10.0 ! EIGRP简介 发布时间:2007.02.08 18:12 来源:赛迪网技术社区作者:kornEIGRP的全名是Enhance Interio Gateway Routing Protocol从字面就可以看出是加强型的IGRP,也就是再度改良IGRP而成EIGRP,EIGRP结合了距离向量(distance Vector)和连结状态(Link-State)的优点以加快收敛,所使用的方法是DUAL(Diffusing Update Aigorithm),当路径更改时DUAL会传送变动的部分而不是整个路径表,而Router都有储存邻近的路径表,当路径变动时,Router可以快速地反应,EIGRP也不会周期性地传送变动讯息以节省频宽的使用,另外值得特别指出的是EIGRP具有支持多个网络层的协议,例如IP层对:IP层、IPX层对IPX层、AppleTalk的RTMP对RTMP,如下图:498)this.style.width=498; border=0EIGRP整合(Integrated)了IP、AppleTalk和IPX三种协议。 EIGRP是最典型的平衡混合路由选择协议,它融合了距离矢量和链路状态两种路由选择协、议的优点,使用散射更新算法 (DUAL),实现了很高的路由性能。EIGRP协议的特点如下。运行EIGRP的路由器之间形成邻居关系,并交换路由信息。相邻路由器之间通过发送和接收Hello包来保持联系,维持邻居关系。Hello包的发送间隔默认值为5s钟。运行EIGRP的路由器存储所有与其相邻路由器的路由表信息,以便快速适应路由变化;如果没有合适的路由存在,EIGRP将查询其相邻的路由器,以便发现可以替换的路由。采用不定期更新,即只在路由器改变计量标准或拓扑出现变化时发送部分更新信息。支持可变长子网掩码 (VLSM)和不连续的子网,艾持对自动路由汇总功能的设定。支持多种网络层协议,除IP协议外,还支持IPX、AppleTalk等协议。在运行EIGRP的路由器内部,有一个相邻路由器表、一个拓扑结构表和一个路由表。使用DUAL算法,具有很好的路由收敛特性。具有相同自治系统号的EIGRP和IGRP之间彼此交换路由信息。EIGRP协议的配置与IGRP配置有相似之处,但由于它对VLSM的支持和众多的其他特性 使得在高级配置以及查看和监测命令方面与IGRP有许多不同之处,这是在配置EIGRP的实验中应注意的。 EIGRP概述 加强型内部网关路由协议(以下简称“EIGRP”)是Cisco公司开发的距离矢量路由协议,支持IP、IPX等多种网络层协议。由于TCPIP是当今网络中最常用的协议,故本文只讨论IP网络环境中的EIGRP。 EIGRP是一个平衡混合型路由协议(Cisco公司创造的术语),既有传统的距离矢量协议的特点:路由信息依靠邻居路由器通告,遵守路由水平分割和反向毒化规则,路由自动归纳,配置简单,又有传统的链路状态路由协议的特点:没有路由跳数的限制,当路由信息发生变化时,采用增量更新的方式,保留对所有可能路由(网络的拓扑结构)的了解、支持变长子网掩码、路由手动归纳。该协议同时又具有自己独特的特点:支持非等成本路由上的负载均衡,采用差分更新算法(DUAL)在确保无路由环路的前提下,收敛迅速。因而适用于中大型网络。 EIGRP的术语和概念 .在EIGRP中,有五种类型的数据包:HELLO:以组播的方式发送,用于发现邻居路由器,并维持邻居关系。 更新(update):当路由器收到某个邻居路由器的第一个HELLO包时,以单点传送方式回送一个包含它所知道的路由信息的更新包。当路由信息发生变化时,以组播的方式发送一个只包含变化信息的更新包。注意,两个更新包的内容不一样。 查询(query):当一条链路失效,路由器重新进行路由计算但在拓扑表中没有可行的后继路由时,路由器就以组播的方式向它的邻居发送一个查询包,以询问它们是否有一条到目的地的可行后继路由。 答复(reply):以单点的方式回传给查询方,对查询数据包进行应答。 确认(ACK):以单点的方式传送,用来确认更新、查询、答复数据包,以确保更新、查询、答复传输的可靠性。 .可行距离(feasible distance):到达一个目的地的最短路由的度量值。 .后继 ( successor):后继是一个直接连接的邻居路由器,通过它具有到达目的地的最短路由。通过后继路由器将包转发到目的地。 .通告距离(advertise distance):相邻路由器所通告的相邻路由器自己到达某个目的地的最短路由的度量值。 .可行后继 (feasible successor):可行后继是一个邻居路由器,通过它可以到达目的地,不使用这个路由器是因为通过它到达目的地的路由的度量值比其他路由器高,但它的通告距离小于可行距离,因而被保存在拓扑表中,用做备择路由。 .可行条件 (feasible conditon) :上述四个术语,构成了可行条件,是EIGRP路由器更新路由表和拓扑表的依据。可行条件可以有效地阻止路由环路,实现路由的快速收敛。 .活跃状态 (active state):当路由器失去了到达一个目的地的路由,并且没有可行后继可利用时,该路由进入活跃状态,是一条不可用的路由。当一条路由处于活跃状态时,路由器向所有邻居发送查询来寻找另外一条到达该目的地的路由。 .被动状态 (passive state):当路由器失去了一条路由的后继而有一个可行后继,或者再找到一个后继时,该路由进入被动状态,是一条可用的路由。 EIGRP的运行 初始运行EIGRP的路由器都要经历发现邻居、了解网络、选择路由的过程,在这个过程中同时建立三张独立的表:列有相邻路由器的邻居表、描述网络结构的拓扑表、路由表,并在运行中网络发生变化时更新这三张表。 .建立相邻关系 运行EIGRP的路由器自开始运行起,就不断地用组播地址从参与的各个接口向外发送HELLO包。当路由器收到某个邻居路由器的第一个HELLO包时,以单点传送方式回送一个更新包,在得到对方路由器对更新包的确认后,这时双方建立起邻居关系。 .发现网络拓扑,选择最短路由 当路由器动态地发现了一个新邻居时,也获得了来自这个新邻居所通告的路由信息,路由器将获得的路由更新信息首先与拓扑表中所记录的信息进行比较,符合可行条件的路由被放入拓扑表,再将拓扑表中通过后继路由器的路由加入路由表,通过可行后继路由器的路由如果在所配置的非等成本路由负载均衡的范围内,则也加入路由表,否则,保存在拓扑表中作为备择路由。如果路由器通过不同的路由协议学到了到同一目的地的多条路由,则比较路由的管理距离,管理距离最小的路由为最优路由。 .路由查询、更新 当路由信息没有变化时,邻居间只是通过发送包,来维持邻居关系,以减少对网络带宽的占用。在发现一个邻居丢失、一条链路不可用时,EIGRP立即会从拓扑表中寻找可行后继路由器,启用备择路由。如果拓扑表中没有后继路由器,由于EIGRP 依靠它的邻居来提供路由信息,在将该路由置为活跃状态后,向所有邻居发送查询数据包。 如果某个邻居有一条到达目的地的路由,那么它将对这个查询进行答复,并且不再扩散这个查询,否则,它将进一步地向它自己的每个邻居查询,只有所有查询都得到答复后,EIGRP 才重新计算路由,选择新的后继路由器。 EIGRP运行的验证 在下图所示的网络拓扑中,路由器进行了基本的配置,所有路由器都属于自治系统,未配置其他路由协议,我们用运行EIGRP的相关命令获得的有关信息来验证EIGRP的运行。 498)this.style.width=498; border=0我们以路由器R为例来验证是如何了解网络、选择路由的。 对于目的地192.168.1.0、172.16.1.4,路由器R都分别收到了它的两个邻居路由器(10.1.1.3)和(172.16.1.2)通告的路由。到目的地192.168.1.0的最短路由是通过,可行距离是20563200,但是的通告距离(281600)小于可行距离,符合可行条件,因而是该路由的可行后继路由器。到目的地172.16.1.4的最短路由是通过,可行距离是20537600,通过的通告距离(20537600)等于(注意:不小于)可行距离,不符合可行条件,因而不能作为该路由的可行后继路由器。 在缺省情况下,是等成本路由上的负载均衡,因而在路由表中到目的地 192.168.1.0的路由只有通过路由器(10.1.1.3)一条,备择路由()保存在拓扑表中。因为是通过内部EIGRP学到的路由,故路由的管理距离为。如果配置了非等成本负载均衡,备择路由也将被加入路由表。 最后要强调的是,由于是isco公司私有的路由协议,因而本文所探讨的内容都是基于Cisco公司的路由器。OSPF路由协议配置指南 发布时间:2007.02.07 17:48 来源:赛迪网技术社区作者:kornOSPF通过路由器之间通告网络接口的状态来建立链路状态数据库,生成最短路径树,每个OSPF路由器使用这些最短路径构造路由表。文档见RFC2178。 1、OSPF网络的特点是什么?ospf是一种链路状态路由协议,与距离矢量路由协议相对,它使用区域边界路由器和一个骨干区域,ospf定义的网络类型有:点到点、广播、非广播、点到多点等。 2、什么是区域边界路由器(ABR)?一个自治系统划分为多个区域,一个区域边界路由器连接同一个自治系统中的两个或者多个区域。 3、什么是骨干区域?骨干区域是一个与区域边界路由器相连接的区域,通常一个区域到另一个区域只能经过骨干区域。 4、ospf网络中有什么类型的路由器:骨干路由器、区域边界路由器、内部路由器、自治系统边界路由器(它连接两个自治系统)。 5 路由汇总:由区域边界路由器和自治系统边界路由器产生的路由的集合,它将向邻接的路由器通告。如果一个区域内的网络编号是连续的,那么区域边界路有器和自治系统边界路由器就能够被配置成通告路由,汇总路由指定了网络编号的范围。路由汇总减少了链接状态数据库的大小。 6 区域的类型: 短秃区域(stub):一种外部路由不流进的区域。所谓外部路由是指任何非ospf发起的路由,例如一条由其他路由协议发布的路由就是外部路由,外部路由通常在一个ospf互联网上泛洪式流过。如果一个区域只有一个出口,就几乎没有理由将大量路由流进该区域,只送一条缺省LSA路由到这个区域。通过该路由。短秃区域可以到达本自治区域以外的终端。 完全短秃区域。除了不将外部路由泛洪进该区域外,甚至连ospf概要路由也不进该区域。7有关csico路由器命令 全局设置 任务 命令 指定使用OSPF协议 router ospf process-id 1 指定与该路由器相连的网络 network address wildcard-mask area area-id 2 指定与该路由器相邻的节点地址 neighbor ip-address 注:1、OSPF路由进程process-id必须指定范围在1-65535,多个OSPF进程可以在同一个路由器上配置,但最好不这样做。多个OSPF进程需要多个OSPF数据库的副本,必须运行多个最短路径算法的副本。process-id只在路由器内部起作用,不同路由器的 process-id可以不同。 2、wildcard-mask 是子网掩码的反码, 网络区域ID area-id在0-4294967295内的十进制数,也可以是带有IP地址格式的x.x.x.x。当网络区域ID为0或0.0.0.0时为主干域。不同网络区域的路由器通过主干域学习路由信息。 8基本配置举例: Router1: interface ethernet 0 ip address 192.1.0.129 255.255.255.192 ! interface serial 0 ip address 192.200.10.5 255.255.255.252 ! router ospf 100 network 192.200.10.4 0.0.0.3 area 0 network 192.1.0.128 0.0.0.63 area 1 ! Router2: interface ethernet 0 ip address 192.1.0.65 255.255.255.192 ! interface serial 0 ip address 192.200.10.6 255.255.255.252 ! router ospf 200 network 192.200.10.4 0.0.0.3 area 0 network 192.1.0.64 0.0.0.63 area 2 ! Router3: interface ethernet 0 ip address 192.1.0.130 255.255.255.192 ! router ospf 300 network 192.1.0.128 0.0.0.63 area 1 ! Router4: interface ethernet 0 ip address 192.1.0.66 255.255.255.192 ! router ospf 400 network 192.1.0.64 0.0.0.63 area 1 ! 相关调试命令: debug ip ospf events debug ip ospf packet show ip ospf show ip ospf database show ip ospf interface show ip ospf neighbor show ip route 9. 使用身份验证 为了安全的原因,我们可以在相同OSPF区域的路由器上启用身份验证的功能,只有经过身份验证的同一区域的路由器才能互相通告路由信息。 在默认情况下OSPF不使用区域验证。通过两种方法可启
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南京创业公司管理制度
- 公司行政基础管理制度
- 公司机关防疫管理制度
- 期货采购方案(3篇)
- 公益课堂策划管理制度
- 医学装备出库管理制度
- 公司研发基金管理制度
- 养老护理服务管理制度
- DB62T 4483-2021 绿色食品 大棚草莓生产技术规程
- DB62T 4384-2021 辣椒品种 苏武红
- 移动式冷库租赁合同协议
- 2025年山东济南先行投资集团有限责任公司招聘笔试参考题库附带答案详解
- 2025-2030中国氧化镓行业市场发展趋势与前景展望战略研究报告
- 2025年新兴产业投资热点试题及答案
- UPS电源项目总结分析报告
- DB11-T 1315-2025 北京市绿色建筑工程验收标准
- 新生儿健康评估相关试题及答案
- 招商岗位测试题及答案
- 2025中考语文常考作文押题反反复复就考这10篇篇篇惊艳
- 2025至2030年液压马达行业深度研究报告
- 2025年税务师考试全面覆盖试题及答案
评论
0/150
提交评论