二次函数的图像与性质说课稿、单页教案及反思.doc_第1页
二次函数的图像与性质说课稿、单页教案及反思.doc_第2页
二次函数的图像与性质说课稿、单页教案及反思.doc_第3页
二次函数的图像与性质说课稿、单页教案及反思.doc_第4页
二次函数的图像与性质说课稿、单页教案及反思.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

。二次函数的图像与性质说课稿教材背景分析一、教材的地位与作用二次函数的图像与性质是九年级下册第26章的内容,在学生已经学习过一次函数(包括正比例函数)、反比例函数的图像与性质,以及会建立二次函数模型和理解二次函数的有关概念的基础上进行的,它既是前面所学知识的应用、拓展,是对前面所学一次函数、反比例函数图像与性质的一次升华,又是今后学习二次函数的应用、二次函数与一元二次方程的联系的预备知识,又是学生高中阶段数学学习的基础知识。它在教材中起着非常重要的作用。另外,本节课,最大特点,是结合图形来研究二次函数的性质,这充分体现了一个很重要的数学思想数形结合数学思想。因此,这一节课,无论是在知识上,还是对学生动手能力培养上都有着十分重要的作用。二、教学重点与难点通过分析,我们知道,二次函数的图像与性质在整个教材体系中,起着承上启下的作用,有着广泛的应用。我认为这节课的重点是:作出函数y=ax2+c的图象,比较函数y=ax2和函数y=ax2+c的异同,了解它们的性质;函数y=ax2+c的图象与性质的理解,掌握抛物线的上下平移规律是本节课的难点。教学目标设计知识目标(1)会做函数y=ax2和y=ax2+c的图象,并能比较它们的异同;理解a,c对二次函数图象的影响,能正确说出两函数的开口方向,对称轴和顶点坐标;(2) 了解抛物线y=ax2上下平移规律。能力目标本节课,过程是由抽象到直观,再由直观到抽象(既二次函数y=ax2+c的关系式作出图像说出二次函数y=ax2+c的图像与性质),培养学生分析问题、解决问题的能力,培养学生观察、探讨、分析、分类讨论的能力。情感目标引导学生养成全面看问题、分类讨论的学习习惯,通过直观多媒体演示和学生动手作图、分析,激发学生学习数学的积极性。教学结构设计建立以“实施主体性教学,培养学生自主探究的能力”为主的课堂教学结构模式学教结合式。让学生先自己动手画图,然后由老师来演示,这样从直观的看图观察,思考,提问,容易激发学生的求知欲望,调动学生学习的兴趣。以“学教结合”为模式的课堂结构设计为“三个阶段”:准备阶段。教师先从回忆函数y=ax2图象与性质,从而导入二次函数y=ax2+c的图像与性质,进而带出本节课的学习目标。参与阶段。学生围绕目标自我表现,相互交流,启发理解。应用与升华阶段。这一阶段是让学生从“学会”到“会学”的升华。延伸阶段要做到“三化”,一是知识的深化,二是知识向能力、技能的转化,三是学习方法的固化,即演练巩固,牢固掌握其方法。教学媒体设计充分利用多媒体教学,将powerpoint、几何画板两种软件结合起来制作上课课件。制作的课件,不仅课堂所授容量大,而且,利用作二次函数图像的动画性,更加形象的反映出作图的过程,增加数学的美感,激发学生作图的兴趣。 教学评价设计本节课,我合理、充分利用了多媒体教学的手段,利用powerpoint,几何画板这两种软件制作了课件,特别是几何画板软件的应用,画出了标准、动画形式的二次函数的图像,让抽象思维不强的学生,更加形象的结合图形,分析说出二次函数y=ax2的有关性质,充分体现了“数形结合”的数学思想。为了突出重点,攻破难点,我要求学生“先观察后思考”、“先做后说”、“先讨论后总结”,“师生共做”充分体现了教学过程中以学生为主体,老师起主导作用的教学原则。本节课,让学生有观察,有思考,有讨论,有练习,充分调动了学生的学习兴趣,从而为高效率、高质量地上好这一堂课作好了充分的准备。二次函数的图像与性质教案和平中学 王霞教学目标:1、了解二次函数图像的特点。2、掌握一般二次函数的图像与的图像之间的关系。3、会确定图像的开口方向,会利用公式求顶点坐标和对称轴。教学重点:二次函数的图像特征教学难点:例2的解题思路与解题技巧。教学设计:一、回顾知识1、二次函数的图像和的图像之间的关系。2、讲评上节课的选作题对于函数,请回答下列问题:(1)对于函数的图像可以由什么抛物线,经怎样平移得到的?(2)函数图像的对称轴、顶点坐标各是什么?思路:把化为的形式。=在中,m、k分别是什么?从而可以确定由什么函数的图像经怎样的平移得到的?二、探索二次函数的图像特征1、问题:对于二次函数y=ax+bx+c ( a0 )的图象及图象的形状、开口方向、位置又是怎样的?学生有难度时可启发:通过变形能否将y=ax+bx+c转化为y = a(x+m)2 +k的形式 ?=由此可见函数的图像与函数的图像的形状、开口方向均相同,只是位置不同,可以通过平移得到。练习:课本第37页课内练习第2题(课本的例2删掉不讲)2、二次函数的图像特征(1)二次函数 ( a0)的图象是一条抛物线;(2)对称轴是直线x=,顶点坐标是为(,)(3)当a0时,抛物线的开口向上,顶点是抛物线上的最低点。当a0,y0?以及图中AOC与DCB有何关系,进一步培养学生发现问题解决问题的能力。问题2、问题3、问题4是抛物线的平移、轴对称和旋转的题目。主要是让学生抓住抛物线的顶点和开口方向来完成。这种类型的题目也有少数同学从坐标点的对称角度来解决也是可行的,并且方便记忆,对于这两种方法我让学生作了及时的归纳小结。问题5和问题6是关于抛物线的最值问题。问题5是利用抛物线的对称性解决三角形的周长最小的题目。学生通过作图能独立解决并求出点的坐标。问题6是本节课的重点,它通过建立目标函数解决四边形面积的极值。本题目关键是引导学生如何设点的坐标,将四边形的面积转化成我们熟悉的三角形(或直角梯形)来建立函数关系式。通过这条题进一步培养学生建立函数模型的思想。本题让学生充分合作交流,最后,让学生在自主探索中获取新的知识。通过观察图象求出了四边形的面积后,我又提出如何求BCF的面积的最大值的问题,让本题得到进一步的升华,培养学生的创新思维。问题7是在抛物线上探求点存在性问题,引导学生先作出符合条件的平行四边形,再判断点是否在抛物线上,本题着重培养了学生数形结合的思想方法。这7个问题由浅入深,循序渐进推出,符合学生的认知规律,使学生对二次函数图象和性质有了进一步的理解和提高。本节课完成后,我感到也有不足的地方:课堂容量稍有点偏大,学生没有时间独立完成作业。虽然我对每个问题及时小结、归纳,但没有留一定时间让学生整理消化。通过这堂

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论